分析 由同角三角函數(shù)的基本關系可得cosα和sinβ,代入兩角和的余弦公式計算可得.
解答 解:∵sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{5}}{3}$,sinβ=-$\sqrt{1-co{s}^{2}β}$=-$\frac{4}{5}$
∴cos(α+β)=cosαcosβ-sinαsinβ
=$-\frac{\sqrt{5}}{3}×(-\frac{3}{5})-\frac{2}{3}×(-\frac{4}{5})$=$\frac{5\sqrt{3}+8}{15}$
故答案為:$\frac{5\sqrt{3}+8}{15}$
點評 本題考查兩角和與差的三角函數(shù)公式,涉及同角三角函數(shù)的基本關系,屬基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-$\frac{2π}{81}$ | B. | $\frac{2π}{81}$ | C. | 1-$\frac{4π}{81}$ | D. | $\frac{4π}{81}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | α<b<c | B. | b<α<c | C. | c<b<α | D. | 不能確定 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com