【題目】已知動圓與直線相切且與圓外切。
(1)求圓心的軌跡的方程;
(2)設第一象限內的點在軌跡上,若軸上兩點,,滿足且. 延長、分別交軌跡于、兩點,若直線的斜率,求點的坐標.
【答案】(1)(2)
【解析】
(1)結合題意,可知圓心P的軌跡為以為焦點,直線為準線的拋物線,建立方程,即可。(2)設出直線SA的方程,代入拋物線方程,用k,m表示M,N的縱坐標,結合,計算m,計算S坐標,即可。
(1)設動圓的半徑為
則圓心P到直線的距離,且,
故圓心到直線的距離為,
由拋物線的定義知,圓心的軌跡是以為焦點,直線為準線的拋物線,
故軌跡的方程為.
(另法:設動圓的半徑為,圓心為,
則,,化簡得)
(2)
設,由,得,
的斜率和的斜率均存在,且互為相反數(shù)
設的斜率為,則直線,
聯(lián)立得,
故,,
即(*),
由于的斜率為,將(*)中的換成,
得到點的縱坐標,
故直線的斜率,
故,此時,時,,
所以點的坐標為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
當時,求函數(shù)的單調增區(qū)間;
若函數(shù)在上是增函數(shù),求實數(shù)a的取值范圍;
若,且對任意,,,都有,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列命題中錯誤的是( )
A.是函數(shù)的極值點;
B.若,則;
C.函數(shù)的最小值為2;
D.函數(shù)的定義域為[1,2],則函數(shù)的定義域為[2,4].
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)求函數(shù)的單調區(qū)間;
(3)若在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,圖2是某城市1月至8月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級, 一級空氣質量最好,一級和二級都是質量合格天氣,下面四種說法正確的是( )
①1月至8月空氣合格天數(shù)超過20天的月份有5個
②第二季度與第一季度相比,空氣達標天數(shù)的比重下降了
③8月是空氣質量最好的一個月
④6月份的空氣質量最差
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),過曲線上的點處的切線方程為.
(1)若函數(shù)在處有極值,求的解析式;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD-ABCD中,平面垂直于對角線AC,且平面截得正方體的六個表面得到截面六邊形,記此截面六邊形的面積為S,周長為l,則( )
A. S為定值,l不為定值 B. S不為定值,l為定值
C. S與l均為定值 D. S與l均不為定值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車品牌為了了解客戶對于其旗下的五種型號汽車的滿意情況,隨機抽取了一些客戶進行回訪,調查結果如下表:
汽車型號 | I | II | III | IV | V |
回訪客戶(人數(shù)) | 250 | 100 | 200 | 700 | 350 |
滿意率 | 0.5 | 0.3 | 0.6 | 0.3 | 0.2 |
滿意率是指:某種型號汽車的回訪客戶中,滿意人數(shù)與總人數(shù)的比值.
(Ⅰ) 從III型號汽車的回訪客戶中隨機選取1人,則這個客戶不滿意的概率為________;
(Ⅱ) 從所有的客戶中隨機選取1個人,估計這個客戶滿意的概率;
(Ⅲ) 汽車公司擬改變投資策略,這將導致不同型號汽車的滿意率發(fā)生變化.假設表格中只有兩種型號汽車的滿意率數(shù)據(jù)發(fā)生變化,那么哪種型號汽車的滿意率增加0.1,哪種型號汽車的滿意率減少0.1,使得獲得滿意的客戶人數(shù)與樣本中的客戶總人數(shù)的比值達到最大?(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現(xiàn)從農歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com