【題目】如圖,AB是平面的斜線段,A為斜足,點C滿足,且在平面內(nèi)運動,則有以下幾個命題:
①當時,點C的軌跡是拋物線;
②當時,點C的軌跡是一條直線;
③當時,點C的軌跡是圓;
④當時,點C的軌跡是橢圓;
⑤當時,點C的軌跡是雙曲線.
其中正確的命題是__________.(將所有正確的命題序號填到橫線上)
【答案】②③
【解析】
根據(jù)題意,分別驗證和時C點的軌跡,當時,作斜線段AB的中垂面,與平面的交線為一條直線,即為C點軌跡;當時,作B在平面內(nèi)的射影為D,
連接BD,CD,在平面內(nèi)建立平面直角坐標系,求C點軌跡方程,根據(jù)軌跡方程即可判斷.
當時,,過AB的中點作線段AB的垂面,
則點C在與的交線上,即點C的軌跡是一條直線;
當時,,設(shè)B在平面內(nèi)的射影為D,
連接BD,CD,
設(shè),,則,
在平面內(nèi),以AD所在直線為x軸,以AD的中垂線為y軸如圖建立平面直角坐標系,
設(shè),則有
則,,
,
∴,
化簡可得.
∴C的軌跡是圓.
故答案為:②③
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形中,,,,E,F分別為,邊的中點.現(xiàn)將沿著折疊到的位置,使得平面平面.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在定義域內(nèi)單調(diào)遞增,求的取值范圍;
(2)若,且滿足,問:函數(shù)在處的導(dǎo)數(shù)能否為0?若能,求出處的導(dǎo)數(shù);若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,則a的最小整數(shù)值是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|2x﹣2|的最大值為M,正實數(shù)a,b滿足a+b=M.
(1)求2a2+b2的最小值;
(2)求證:aabb≥ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2019年連續(xù)六個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示:
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測該公司2020年4月份的利潤;
(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有A,B兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個月,但新材料的不穩(wěn)定性會導(dǎo)致材料的使用壽命不同,現(xiàn)對A,B兩種型號的新型材料對應(yīng)的產(chǎn)品各100件進行科學(xué)模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:
經(jīng)甲公司測算平均每件新型材料每月可以帶來6萬元收人入,不考慮除采購成本之外的其他成本,A型號材料每件的采購成本為10萬元,B型號材料每件的采購成本為12萬元.假設(shè)每件新型材料的使用壽命都是整月數(shù),且以頻率作為每件新型材料使用壽命的概率,如果你是甲公司的負責(zé)人,以每件新型材料產(chǎn)生利潤的平均值為決策依據(jù),你會選擇采購哪款新型材料?
參考數(shù)據(jù):,.
參考公式:回歸直線方程,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在常數(shù)k使得無窮數(shù)列滿足恒成立,則稱為數(shù)列.
(1)若數(shù)列是數(shù)列,,,求;
(2)若等差數(shù)列是數(shù)列,求數(shù)列的通項公式;
(3)是否存在數(shù)列,使得,,,…是等比數(shù)列?若存在,請求出所有滿足條件的數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函.
(1)當的最小正周期為時,求的值;
(2)當時,設(shè)的內(nèi)角A.B.C對應(yīng)的邊分別為a、b、c,已知,且,,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com