【題目】(導(dǎo)學(xué)號(hào):05856335)[選修4-4:坐標(biāo)系與參數(shù)方程]
以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知A(2,π),B(2, ),圓C的極坐標(biāo)方程為ρ2-6ρcos θ+8ρsin θ+21=0.F為圓C上的任意一點(diǎn).
(Ⅰ)寫(xiě)出圓C的參數(shù)方程;
(Ⅱ)求△ABF的面積的最大值.
【答案】(1) (2) 9+2
【解析】試題分析:(1)圓C的極坐標(biāo)方程為ρ2﹣6ρcosθ+8ρsinθ+21=0,利用ρ2=x2+y2,y=ρsinθ,x=ρcosθ即可化為直角坐標(biāo)方程,利用cos2α+sin2α=1可得參數(shù)方程.
(2)A(2,π),B(2, ),分別化為直角坐標(biāo):A(﹣2,0),B(0,2).可得|AB|=2,直線AB的方程為:x﹣y+2=0.因此圓C上的點(diǎn)F到直線AB的距離取得最大值時(shí),△ABF的面積取得最大值.
試題解析:
(Ⅰ)因?yàn)?/span>ρ2-6ρcos θ+8ρsin θ+21=0,故x2+y2-6x+8y+21=0,即(x-3)2+(y+4)2=4,故圓C的參數(shù)方程為 (θ為參數(shù)).
(Ⅱ)易知A(-2,0),B(0,2),故直線AB的方程為x-y+2=0,
點(diǎn)F(x,y)到直線AB:x-y+2=0的距離為d=,
△ABF的面積S=×|AB|×d
=|2cos θ-2sin θ+9|=|2sin(-θ)+9|,
所以△ABF面積的最大值為9+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的離心率為,右焦點(diǎn)為F,上頂點(diǎn)為A,且△AOF的面積為 (O為坐標(biāo)原點(diǎn)).
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上的一點(diǎn),過(guò)P的直線與以橢圓的短軸為直徑的圓切于第一象限內(nèi)的一點(diǎn)M,證明:|PF|+|PM|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像在上連續(xù)不斷,定義:
(),(),其中表示函數(shù)在上的最小值, 表示函數(shù)在上的最大值,若存在最小正整數(shù),使得對(duì)任意的成立,則稱函數(shù)為上的“階收縮函數(shù)”.
(1)若, ,試寫(xiě)出, 的表達(dá)式;
(2)已知函數(shù), ,判斷是否為上的“階收縮函數(shù)”,如果是,求出對(duì)應(yīng)的,如果不是,請(qǐng)說(shuō)明理由;
(3)已知,函數(shù),是上的2階收縮函數(shù),求的取值范圍.
數(shù)學(xué)附加題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856312)[選修4-5:不等式選講]
已知函數(shù)f(x)=|x-m|-2|x-1|(m∈R).
(Ⅰ)當(dāng)m=3時(shí),求函數(shù)f(x)的最大值;
(Ⅱ)解關(guān)于x的不等式f(x)≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856330)
已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且a3=4,a3,a4+2,a5成等差數(shù)列.?dāng)?shù)列{}的前n項(xiàng)和為Tn.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式以及前n項(xiàng)和Sn的表達(dá)式;
(Ⅱ)若Tn<m對(duì)任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)令,討論的單調(diào)性并判斷有無(wú)極值,若有,求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一幾何體的平面展開(kāi)圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),
在此幾何體中,給出下面四個(gè)結(jié)論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的焦點(diǎn)為,橢圓的中心在原點(diǎn),為其右焦點(diǎn),點(diǎn)為曲線和在第一象限的交點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為拋物線上的兩個(gè)動(dòng)點(diǎn),且使得線段的中點(diǎn)在直線上,
為定點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若對(duì)任意,不等式的解集為空集,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com