13.三個數(shù)a=0.32,b=0.32.1,c=20.3的大小關(guān)系是(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)單調(diào)性直接求解.

解答 解:∵0<b=0.32.1<a=0.32<0.30=1,
c=20.3>20=1,
∴b<a<c.
故選:C.

點評 本題考查三個數(shù)的大小的求法,是基礎(chǔ)題,解題時要認真審題,注意指數(shù)函數(shù)、對數(shù)函數(shù)單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{an}滿足:a1=1,an=an-1+3n,則a4等于(  )
A.4B.13C.28D.43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若a和b異面,b和c異面,則( 。
A.a∥cB.a和c異面
C.a和c異面或平行或相交D.a和c相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=loga(x+3)-1(a>0且a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m>0,n>0,則$\frac{1}{m}+\frac{1}{n}$的最小值為( 。
A.$3+2\sqrt{2}$B.$4\sqrt{2}$C.4+2$\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ax+b,x≤0}\\{lo{g}_{c}(x+\frac{1}{9}),x>0}\end{array}\right.$的圖象如圖所示,則a+b+c=( 。
A.$\frac{10}{3}$B.$\frac{13}{3}$C.3D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在長方體ABCD-A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中點.
(1)求證:A1C∥平面BED;
(2)求二面角E-BD-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.給出命題p:a(1-a)>0;命題q:y=x2+(2a-3)x+1與x軸交于不同的兩點.如果命題“p∨q”為真,“p∧q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,設(shè)F1、F2分別為橢圓的左、右焦點,橢圓上任意一個動點M到左焦點F1的距離的最大值 為$\sqrt{2}$+1
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線L的斜率為k,且過左焦點F1,與橢圓C相交于P、Q兩點,若△PQF2的面積為$\frac{\sqrt{10}}{3}$,試求k的值及直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求25除4•6n+5(n+1)的余數(shù)(n∈N).

查看答案和解析>>

同步練習(xí)冊答案