【題目】已知函數(shù),.
(Ⅰ)當(dāng)時,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若,是函數(shù)的兩個極值點(diǎn),且,求證:.
【答案】(Ⅰ) 最小值為,最大值為; (Ⅱ)證明見解析。
【解析】
(Ⅰ)求出函數(shù)f(x)的定義域,運(yùn)用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,求解函數(shù)的最值即可.
(Ⅱ)x1,x2是函數(shù)的兩個極值點(diǎn),所以(x1)=(x2)=0.令通過及構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,推出,所以,即可證明結(jié)論.
(Ⅰ)當(dāng)時,,函數(shù)的定義域?yàn)?/span>,
所以,
當(dāng)時,,函數(shù)單調(diào)遞減;
當(dāng)時,,函數(shù)單調(diào)遞增.
所以函數(shù)在區(qū)間上的最小值為,
又,
顯然
所以函數(shù)在區(qū)間上的最小值為,最大值為.
(Ⅱ)因?yàn)?/span>
所以,因?yàn)楹瘮?shù)有兩個不同的極值點(diǎn),
所以有兩個不同的零點(diǎn).
因此,即 有兩個不同的實(shí)數(shù)根,
設(shè),則,
當(dāng)時,,函數(shù)單調(diào)遞增;
當(dāng),,函數(shù)單調(diào)遞減;
所以函數(shù)的最大值為 。
所以當(dāng)直線與函數(shù)圖像有兩個不同的交點(diǎn)時,,且
要證,只要證,
易知函數(shù)在上單調(diào)遞增,
所以只需證,而,所以
即證,
記,則恒成立,
所以函數(shù)在上單調(diào)遞減,所以當(dāng)時
所以,因此.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“生產(chǎn)發(fā)展、生活富裕、鄉(xiāng)風(fēng)文明、村容整潔、管理民主”的社會主義新農(nóng)村建設(shè),某自然村將村邊一塊廢棄的扇形荒地(如圖)租給蜂農(nóng)養(yǎng)蜂、產(chǎn)蜜與售蜜.已知扇形AOB中,,百米),荒地內(nèi)規(guī)劃修建兩條直路AB,OC,其中點(diǎn)C在弧AB上(C與A,B不重合),在小路AB與OC的交點(diǎn)D處設(shè)立售蜜點(diǎn),圖中陰影部分為蜂巢區(qū),空白部分為蜂源植物生長區(qū).設(shè),蜂巢區(qū)的面積為S(平方百米).
(1)求S關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)為何值時,蜂巢區(qū)的面積S最小,并求此時S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的極值;
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,側(cè)面是正三角形,底面為邊長2的菱形,,.
(1)設(shè)平面平面,求證:;
(2)求多面體的體積;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:
①經(jīng)過定點(diǎn)的直線都可以用方程表示;
②經(jīng)過定點(diǎn)的直線都可以用方程表示;
③不經(jīng)過原點(diǎn)的直線都可以用方程表示;
④經(jīng)過任意兩個不同的點(diǎn)、的直線都可以用方程表示,
其中真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為美化城市環(huán)境,相關(guān)部門需對一半圓形中心廣場進(jìn)行改造出新,為保障市民安全,施工隊(duì)對廣場進(jìn)行圍擋施工.如圖,圍擋經(jīng)過直徑的兩端點(diǎn)A,B及圓周上兩點(diǎn)C,D圍成一個多邊形ABPQR,其中AR,RQ,QP,PB分別與半圓相切于點(diǎn)A,D,C,B.已知該半圓半徑OA長30米,∠COD為60°,設(shè)∠BOC為.
(1)求圍擋內(nèi)部四邊形OCQD的面積;
(2)為減少對市民出行的影響,圍擋部分面積要盡可能小.求該圍擋內(nèi)部多邊形ABPQR面積的最小值?并寫出此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】青島市黃島區(qū)金沙灘海濱浴場是一個受廣大沖浪愛好者喜愛的沖浪地點(diǎn).已知該海濱浴場的海浪高度是時間t(,單位:小時)的函數(shù),記作.經(jīng)長期觀察,的曲線可近似地看成是函數(shù)的圖象,其中.用“五點(diǎn)法”函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
(1)請將上表數(shù)據(jù)補(bǔ)充完整,填寫在相應(yīng)位置,并求出函數(shù)的函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1m時才對沖浪愛好者開放,請依據(jù)(1)中的結(jié)論,判斷一天內(nèi)的上午8:00到晚上20:00之間有多少時間可供沖浪者進(jìn)行運(yùn)動?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的容積為立方米,且.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為()千元.設(shè)該容器的建造費(fèi)用為千元.
(1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該容器的建造費(fèi)用最小時的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com