(本題滿分12分)
成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列中的、、
(1)求數(shù)列的通項(xiàng)公式; (2)數(shù)列的前n項(xiàng)和為

(1)(2)

解析試題分析:(1)設(shè)成等差數(shù)列的三個(gè)正數(shù)分別為
;                                                    ……3分
數(shù)列中的、、依次為,則;
(舍),于是.                              ……6分
(2)因?yàn)閿?shù)列是首項(xiàng),公比2的等比數(shù)列,                                  ……9分
前n項(xiàng)和.                                                           ……12分
考點(diǎn):本小題主要考查等差等比數(shù)列中基本量的計(jì)算,等差等比數(shù)列的通向公式和前n項(xiàng)和公式的求解,考查學(xué)生的運(yùn)算求解能力.
點(diǎn)評(píng):等差數(shù)列和等比數(shù)列是比較重要的兩類數(shù)列,要重點(diǎn)掌握,靈活應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列,的前三項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是一個(gè)等差數(shù)列,且,
(Ⅰ)求的通項(xiàng);  (Ⅱ)求前n項(xiàng)和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知是遞增的等差數(shù)列,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知等差數(shù)列的前項(xiàng)和為,前項(xiàng)和為.
1)求數(shù)列的通項(xiàng)公式
2)設(shè), 求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)數(shù)列的前項(xiàng)和為,已知, (為常數(shù),),且成等差數(shù)列.
(1) 求的值;  
(2) 求數(shù)列的通項(xiàng)公式;
(3) 若數(shù)列 是首項(xiàng)為1,公比為的等比數(shù)列,記

.求證: ,().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知數(shù)列為等差數(shù)列,公差,是數(shù)列的前項(xiàng)和, 且.
(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是等差數(shù)列,其前n項(xiàng)和為Sn,已知
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),證明是等比數(shù)列,并求其前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案