已知橢圓的中心為坐標原點O,焦點在x軸上,過橢圓右焦點F2且斜率為1的直線交橢圓于A、B兩點,弦AB的中點為T,OT的斜率為
(1)求橢圓的離心率;
(2)設Q是橢圓上任意一點,F(xiàn)1為左焦點,求的取值范圍;
(3)若M、N是橢圓上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PN斜率,試求直線PM的斜率的范圍。
(1)(2) (3)
(1)根據(jù)題意設橢圓方程為
點A為       B點為       T點為





     即
 


(3)設,則
   




     
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

在橢圓+=1上求一點P,使它到定點Q(0,1)的距離最大,則P的坐標是___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

△ABC的兩個頂點A、B的坐標分別是(-5,0)、(5,0),邊AC、BC所在直線的斜率
之積為-,求頂點C的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點(3,2)在橢圓+=1上,則(    )
A.點(-3,-2)不在橢圓上
B.點(3,-2)不在橢圓上
C.點(-3,2)在橢圓上
D.無法判斷點(-3,-2)、(3,-2)、(-3,2)是否在橢圓上

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓C1:+=1和橢圓C2:+=1有(   )
A.相等的長軸B.相等的焦距
C.相等的離心率D.相同的準線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點、焦點在x軸的橢圓的離心率為,且過點(,).
(Ⅰ)求橢圓E的方程;
(Ⅱ)若A,B是橢圓E的左、右頂點,直線)與橢圓E交于兩點,證明直線與直線的交點在垂直于軸的定直線上,并求出該直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題








(1)求橢圓的離心率;
(2)若左焦點設過點且不與坐標軸垂直的直線交橢圓于兩點,線段的垂直平分線與x軸交于,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分14分)已知直線與橢圓相交于兩點,且(其中為坐標原點).(1)若橢圓的離心率為,求橢圓的標準方程;
(2)求證:不論如何變化,橢圓恒過定點;
(3)若直線過(2)中的定點,且橢圓的離心率,求原點到直線距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的中心為坐標原點,它在x軸上的一個焦點與短軸兩端點連成60°的角,兩準線間的距離等于8,求橢圓方程.

查看答案和解析>>

同步練習冊答案