【題目】(本題滿分16)

設函數(shù).

1)若=1時,函數(shù)取最小值,求實數(shù)的值;

2)若函數(shù)在定義域上是單調函數(shù),求實數(shù)的取值范圍;

3)若,證明對任意正整數(shù),不等式都成立.

【答案】1- 4.23)詳見解析

【解析】試題分析:(1)利用導數(shù)求開區(qū)間函數(shù)最值,先從導函數(shù)出發(fā),探求極值點即為最值點,最后需列表驗證:由2)函數(shù)在定義域上是單調函數(shù),即導函數(shù)不變號, ≥0≤0( - 1+ ∞)上恒成立. 2x2+2x+b≥0( - 1,+ ∞)上恒成立或2x2+2x+b≤0( - 1,+ ∞)上恒成立,利用變量分離及函數(shù)最值可得:實數(shù)b的取值范圍是.3)證明和項不等式,關鍵分析出和項與通項關系: 即證當,f(x) x3.這可利用導數(shù)給予證明

試題解析:(1)由x + 10x– 1∴f(x)的定義域為( - 1,+ ∞),

x∈ ( - 1,+ ∞),都有f(x)≥f(1)∴f(1)是函數(shù)f(x)的最小值,故有f/(1) = 0,

解得b=" -" 4. 經(jīng)檢驗,列表(略),合題意;

2又函數(shù)在定義域上是單調函數(shù),

≥0≤0( - 1+ ∞)上恒成立.

≥0,x + 10,2x2+2x+b≥0( - 1+ ∞)上恒成立,

b≥-2x2-2x =恒成立,由此得b≥;

≤0, x + 10, 2x2+2x+b≤0,b≤- (2x2+2x)恒成立,

-(2x2+2x) ( - 1+ ∞)上沒有最小值,不存在實數(shù)b使f(x) ≤0恒成立.

綜上所述,實數(shù)b的取值范圍是.

3)當b=" -" 1時,函數(shù)f(x) = x2- ln(x+1),令函數(shù)h(x)="f(x)" – x3= x2– ln(x+1) – x3,

h/(x) =" -" 3x2+2x -,

時,h/(x)0所以函數(shù)h(x)上是單調遞減.

h(0)=0,時,恒有h(x) h(0)=0,x2– ln(x+1) x3恒成立.

故當,f(x) x3..

則有

,故結論成立。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】【2017重慶二診】已知函數(shù),設關于的方程個不同的實數(shù)解,則的所有可能的值為( )

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為2 ,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:
①已知集合A={1,a},B={1,2,3},則“a=3”是“AB”的充分不必要條件;
②“x<0”是“l(fā)n(x+1)<0”的必要不充分條件;
③“函數(shù)f(x)=cos2ax﹣sin2ax的最小正周期為π”是“a=1”的充要條件;
④“平面向量 的夾角是鈍角”的充要條件的“ <0”.
其中正確命題的序號是(把所有正確命題的序號都寫上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記等比數(shù)列{an}前n項和為Sn , 已知a1+a3=30,3S1 , 2S2 , S3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=3,bn+1﹣3bn=3an , 求數(shù)列{bn}的前n項和Bn;
(3)刪除數(shù)列{an}中的第3項,第6項,第9項,…,第3n項,余下的項按原來的順序組成一個新數(shù)列,記為{cn},{cn}的前n項和為Tn , 若對任意n∈N* , 都有 >a,試求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)

如圖,2015年春節(jié),攝影愛好者在某公園處,發(fā)現(xiàn)正前方處有一立柱,測得立柱頂端的仰角和立柱底部的俯角均為,已知的身高約為米(將眼睛距地面的距離按米處理)

(1)求攝影者到立柱的水平距離和立柱的高度;

(2)立柱的頂端有一長2米的彩桿繞中點與立柱所在的平面內旋轉攝影者有一視角范圍為的鏡頭,在彩桿轉動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的兩個焦點坐標分別是F1(﹣ ,0)、F2 ,0),并且經(jīng)過點P( ,﹣ ).
(1)求橢圓C的方程;
(2)若直線l與圓O:x2+y2=1相切,并與橢圓C交于不同的兩點A、B.當 =λ,且滿足 ≤λ≤ 時,求△AOB面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如表資料:

組號

1

2

3

4

5

溫差x(°C)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出y關于x的線性回歸方程 ;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式: = = ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分16分)已知為實數(shù),函數(shù),函數(shù)

1)當時,令,求函數(shù)的極值;

2)當時,令,是否存在實數(shù),使得對于函數(shù)定義域中的任意實數(shù),均存在實數(shù),有成立,若存在,求出實數(shù)的取值集合;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案