【題目】已知函數(shù) ,若存在唯一的正整數(shù)x0 , 使得f(x0)≥0,則實(shí)數(shù)m的取值范圍為

【答案】
【解析】解:由題意,f(x)=0,可得m= , ∴m′= ,
∴函數(shù)在(﹣∞,0),(1,+∞)上單調(diào)遞減,在(0,1)上單調(diào)遞增,
∵存在唯一的正整數(shù)x0 , 使得f(x0)≥0,
x=1時(shí),m= ,x=2時(shí),m= ,
<m≤ ,
所以答案是: ;
【考點(diǎn)精析】本題主要考查了函數(shù)的值和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法;一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1 , D,E分別是棱BC,CC1上的點(diǎn)(點(diǎn)D 不同于點(diǎn)C),且AD⊥DE,F(xiàn)為B1C1的中點(diǎn).求證:

(1)平面ADE⊥平面BCC1B1;
(2)直線A1F∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別根據(jù)下列條件,求圓的方程:
(1)過兩點(diǎn)(0,4),(4,6),且圓心在直線x﹣2y﹣2=0上;
(2)半徑為 ,且與直線2x+3y﹣10=0切于點(diǎn)(2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)若函數(shù)的圖象在處的切線垂直于直線,求實(shí)數(shù)的值及直線的方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱柱 ABCD﹣A1B1C1D1中,底面為平行四邊形,以頂點(diǎn) A 為端點(diǎn)的三條棱長(zhǎng)都相等,且兩兩夾角為 60°.則線段 AC1與平面ABC所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的傾斜角為且經(jīng)過點(diǎn),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為.

1)若直線與曲線有公共點(diǎn),求的取值范圍;

(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)床廠今年初用98萬元購(gòu)進(jìn)一臺(tái)數(shù)控機(jī)床,并立即投入使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年的維修、保養(yǎng)修費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利總額y元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)從第幾年開始,該機(jī)床開始盈利?
(3)使用若干年后,對(duì)機(jī)床的處理有兩種方案:①當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬元價(jià)格處理該機(jī)床;②當(dāng)盈利額達(dá)到最大值時(shí),以12萬元價(jià)格處理該機(jī)床.問哪種方案處理較為合理?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有Sn=an+n﹣3成立.

(Ⅰ)求證:{an﹣1}為等比數(shù)列;

(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)2的正方形,E,F(xiàn)分別為線段DD1 , BD的中點(diǎn).
(1)求證:EF∥平面ABC1D1;
(2)AA1=2 ,求異面直線EF與BC所成的角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案