【題目】每年3月21日是世界睡眠日,良好的睡眠狀況是保持身體健康的重要基礎.為了做好今年的世界睡眠日宣傳工作,某社區(qū)從本轄區(qū)內同一年齡層次的人員中抽取了100人,通過問詢的方式得到他們在一周內的睡眠時間(單位:小時),并繪制出如右的頻率分布直方圖:
(Ⅰ)求這100人睡眠時間的平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點值代替,結果精確到個位);
(Ⅱ)由直方圖可以認為,人的睡眠時間近似服從正態(tài)分布,其中近似地等于樣本平均數(shù),近似地等于樣本方差,.假設該轄區(qū)內這一年齡層次共有10000人,試估計該人群中一周睡眠時間位于區(qū)間(39.2,50.8)的人數(shù).
附:.若隨機變量服從正態(tài)分布,則,.
科目:高中數(shù)學 來源: 題型:
【題目】設是正整數(shù).在一個十進制位數(shù)的各位數(shù)字中,若含有數(shù)字8,則在每個數(shù)字8的前一位數(shù)字就不能是數(shù)字3(即不能出現(xiàn)38字樣).試求出所有這樣的位數(shù)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程與直線的普通方程;
(2)直線與曲線交于兩點,記弦的中點為,點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若四面體的六條棱長分別為2,3,4,5, 6,7,則不同的形狀有______種(若兩個四面體經適當放置后可完全重合,則認為是相同的形狀).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=aex﹣2x+1.
(1)當a=1時,求函數(shù)f(x)的極值;
(2)若f(x)>0對x∈R成立,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xln x-aex(e為自然對數(shù)的底數(shù))有兩個極值點,則實數(shù)a的取值范圍是( )
A. B.(0,e)
C. D.(-∞,e)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費 (單位:千元)對年銷售量 (單位: )和年利潤 (單位:千元)的影響.對近年的年宣傳費 和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
表中 , .附:對于一組數(shù)據(jù) , , , ,其回歸直線 的斜率和截距的最小二乘法估計分別為 , .
(1)根據(jù)散點圖判斷, 與 在哪一個適宜作為年銷售量 關于年宣傳費 的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)1小問的判斷結果及表中數(shù)據(jù),建立 關于 的回歸方程;
(3)已知這種產品的年利潤 與 的關系為 .根據(jù)2小問的結果回答下列問題:
①2年宣傳費 時,年銷售量及年利潤的預報值是多少?
②3年宣傳費為何值時,年利潤的預報值最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三家企業(yè)產品的成本分別為10000,12000,15000,其成本構成如下圖所示,則關于這三家企業(yè)下列說法錯誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年春節(jié)期間,隨著新型冠狀病毒肺炎疫情在全國擴散,各省均啟動重大突發(fā)公共衛(wèi)生事件一級響應,采取了一系列有效的防控措施.如測量體溫、有效隔離等.
(1)現(xiàn)從深圳市某社區(qū)的體溫登記表中隨機采集100個樣本.據(jù)分析,人群體溫近似服從正態(tài)分布.若表示所采集100個樣本的數(shù)值在之外的的個數(shù),求及X的數(shù)學期望.
(2)疫情期間,武漢大學中南醫(yī)院重癥監(jiān)護室(ICU)主任彭志勇團隊對138例確診患者進行跟蹤記錄.為了分析并發(fā)癥(complications)與重癥患者(ICU)有關的可信程度,現(xiàn)從該團隊發(fā)表在國際頂級醫(yī)學期刊JAMA《美國醫(yī)學會雜志》研究論文中獲得相關數(shù)據(jù).請將下列2×2列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過0.1%的前提下認為“重癥患者與并發(fā)癥有關”?
附:若,則,,,.
參考公式與臨界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com