已知橢圓C的中心在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線的焦點,

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)過橢圓C的右焦點作直線l交橢圓C于A、B兩點,交y軸于M點,若  為定值.

 

【答案】

(I)設橢圓C的方程為,

因為拋物線的焦點坐標是  所以由題意知b = 1.

又有        

∴橢圓C的方程為      …………………………………………4分

(II)方法一:設A、B、M點的坐標分別為

易知右焦點的坐標為(2,0).

   ……6分

將A點坐標代入到橢圓方程中,得

去分母整理得     ………………………………………9分

   …………12分

方法二:設A、B、M點的坐標分別為

又易知F點的坐標為(2,0).

顯然直線l存在的斜率,設直線l的斜率為k,則直線l的方程是

將直線l的方程代入到橢圓C的方程中,消去y并整理得

           ………………………………8分

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:山東省濟寧市2012屆高二下學期期末考試理科數(shù)學 題型:解答題

(本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

點,左焦

(1)求該橢圓的標準方程;

(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

(3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆山東省高二下學期期末考試理科數(shù)學 題型:解答題

(本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

。

(1)求該橢圓的標準方程;

(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

(3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

 

查看答案和解析>>

同步練習冊答案