15.已知直線l的傾斜角α滿足tanα=$\sqrt{3}$,則直線l的傾斜角是(  )
A.30°B.60°C.30°或150°D.60°或120°

分析 根據(jù)傾斜角的范圍結(jié)合三角函數(shù)的正切值,求出α的取值即可.

解答 解:∵直線l的傾斜角α∈[0°,180°),
且滿足tanα=$\sqrt{3}$,
而tan60°=$\sqrt{3}$,
則直線l的傾斜角是60°,
故選:B.

點(diǎn)評(píng) 本題考查了直線的傾斜角的問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=${x}^{{m}^{2}+2m-3}$(m∈Z)的圖象關(guān)于y軸對(duì)稱(chēng),且在(0,+∞)上隨著x值的增大函數(shù)值減小,求f(x)的解析式及其定義域、值域,并比較f(-2)與f(-1)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知P(3,-1),N(-$\sqrt{3}$,$\sqrt{3}$),M(6,2),直線l過(guò)P點(diǎn),且與線段MN相交,則直線l的斜率的取值范圍是( 。
A.[-1,$\frac{\sqrt{3}}{3}$]B.[-1,-$\frac{\sqrt{3}}{3}$]C.(-∞,-$\frac{\sqrt{3}}{3}$]∪[1,+∞)D.[-$\frac{\sqrt{3}}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,|$\overrightarrow{AB}$|=$\frac{1}{t}$,|$\overrightarrow{AC}$|=t,t∈[$\frac{1}{4}$,4];若P是△ABC所在平面內(nèi)一點(diǎn),且$\overrightarrow{AP}$=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{4\overrightarrow{AC}}{|\overrightarrow{AC}|}$,則$\overrightarrow{PB}$$•\overrightarrow{PC}$的取值范圍是( 。
A.[13,17]B.[12,13]C.[$\frac{3}{4}$,12]D.[$\frac{3}{4}$,13]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.經(jīng)過(guò)點(diǎn)P(-3,-5),且傾斜角為90°的直線方程是x=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},-1≤x<1}\\{lgx,x≥1}\end{array}\right.$的零點(diǎn)個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知f(x-1)=x2+2x-4,則f(-3)=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知拋物線關(guān)于x軸對(duì)稱(chēng),它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且過(guò)點(diǎn)A(2,2$\sqrt{2}$).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)拋物線的焦點(diǎn)F和點(diǎn)A的直線l交拋物線于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)(0,4),離心率為$\frac{3}{5}$,求C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案