分析 (1)消去參數(shù),可得直角坐標(biāo)方程;
(2)先將原極坐標(biāo)方程化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程進(jìn)行判斷.
解答 解:(1)圓錐曲線C的參數(shù)方程:$\left\{\begin{array}{l}x={t^2}+\frac{1}{t^2}-2\\ y=t-\frac{1}{t}\end{array}\right.(t$為參數(shù)),可得y2=t2+$\frac{1}{{t}^{2}}$-2=x;
(2)由ρ=1得x2+y2=1,
又∵ρ=2cos(θ+$\frac{π}{3}$)=cosθ-$\sqrt{3}$sinθ,
∴ρ2=ρcosθ-$\sqrt{3}ρ$sinθ,
∴x2+y2-x+$\sqrt{3}$y=0,
聯(lián)立兩方程,解得A(1,0),B(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),
∴|AB|=$\sqrt{(1+\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}$=$\sqrt{3}$.
點(diǎn)評(píng) 本題考查參數(shù)方程與普通方程的互化,考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1<a<2 | B. | 1≤a<3 | C. | a>0 | D. | 1<a<3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ε | 0 | 1 | 2 | 3 | 4 |
p | 0.2 | 0.4 | 0.3 | 0.08 | 0.02 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-∞,2] | C. | (-∞,-1),(1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1} | B. | {1} | C. | {-1,1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com