函數(shù)f(x)是(0,+∞)上的單調(diào)遞增函數(shù),當(dāng)n∈N*時(shí),f(n)∈N*,且f[f(n)]=3n,則f(1)的值等于
[     ]
A.1
B.2
C.3
D.4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)滿足f(x+1)=f(x-1),給出以下命題:①函數(shù)f(x)是周期為2的周期函數(shù);②函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱;③函數(shù)f(x)的圖象關(guān)于點(diǎn)(k,0)(k∈Z)對(duì)稱;④若函數(shù)f(x)是(0,1)上的增函數(shù),則f(x)是(3,5)上的增函數(shù),其中正確命題的番號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-4x-1.
(Ⅰ)若a=2時(shí),求當(dāng)x∈[0,3]時(shí),函數(shù)f(x)的值域;
(Ⅱ)若a=2,當(dāng)x∈(0,1)時(shí),f(1-m)-f(2m-1)<0恒成立,求m的取值范圍;
(Ⅲ)若a為非負(fù)數(shù),且函數(shù)f(x)是區(qū)間[0,3]上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)是(0,+∞)上的單調(diào)遞增函數(shù),當(dāng)n∈N*時(shí),f(n)∈N*,且f[f(n)]=3n,則f(1)的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|4x-x2|(x∈R),對(duì)于任意的正實(shí)數(shù)t∈(0,b],定義:函數(shù)f(x)在[0,t]上的最小值為N(t),函數(shù)f(x)在[0,t]上的最大值為M(t),現(xiàn)若存在最小正整數(shù)m,使得M(t)-N(t)≤m•t對(duì)任意的正實(shí)數(shù)t∈(0,b]成立,則稱函數(shù)f(x)為區(qū)間(0,b]的“m階收縮函數(shù)”
(1)當(dāng)t∈(0,1]時(shí),試寫(xiě)出N(t),M(t)的表達(dá)式,并判斷函數(shù)f(x)是否為(0,1]上的“m階收縮函數(shù)”,如果是,請(qǐng)寫(xiě)出對(duì)應(yīng)的m的值;(只寫(xiě)出相應(yīng)結(jié)論,不要求證明過(guò)程)
(2)若函數(shù)f(x)是(0,b]上的4階收縮函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是(0,+∞)上可導(dǎo)函數(shù),且xf′(x)>f(x)在x>0時(shí)恒成立,又g(x)=ln(1+x)-x(x>-1)
①求g(x)的最值
②求證x1>0,x2>0時(shí)f(x1+x2)>f(x1)+f(x2)并猜想一個(gè)一般結(jié)論,加以證明
③求證
1
22
ln22+
1
32
ln32+…+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
(n∈N*)

查看答案和解析>>

同步練習(xí)冊(cè)答案