函數(shù),

A. 奇函數(shù)           B. 偶函數(shù)       

C. 非奇非偶函數(shù)     D.既是奇函數(shù)又是偶函數(shù)

 

【答案】

C

【解析】因為函數(shù),定義域不關于原點對稱,因此可知函數(shù)是非奇非偶函數(shù),選C

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、函f(x)=2x-2-x在定義域上是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù). 當a,b∈[-1,1],且a+b≠0時,有
f(a)+f(b)a+b
>0
成立.
(Ⅰ)判斷函f(x)的單調(diào)性,并證明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1對所有x∈[-1,1],b∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意實數(shù)a,b都有f(a•b)=af(b)+bf(a),則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)是定義在[-1,1]上的奇函數(shù). 當a,b∈[-1,1],且a+b≠0時,有數(shù)學公式成立.
(Ⅰ)判斷函f(x)的單調(diào)性,并證明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1對所有x∈[-1,1],b∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年陜西師大附中高一(上)期中數(shù)學試卷(解析版) 題型:解答題

已知f(x)是定義在[-1,1]上的奇函數(shù). 當a,b∈[-1,1],且a+b≠0時,有成立.
(Ⅰ)判斷函f(x)的單調(diào)性,并證明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1對所有x∈[-1,1],b∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案