如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC.把△BAC沿AC折起到△PAC的位置,使得點(diǎn)P在平面ADC上的正投影O恰好落在線段AC上,如圖2所示.點(diǎn)E、F分別為棱PC,CD的中點(diǎn).
(1)求證:平面OEF∥平面APD;
(2)求證:CD⊥平面POF;
(3)在棱PC上是否存在一點(diǎn)M,使得M到P,O,C,F四點(diǎn)距離相等?請(qǐng)說明理由.
解析: (1)證明:因?yàn)辄c(diǎn)P在平面ADC上的正投影O恰好落在線段AC上,所以PO⊥平面ADC,所以PO⊥AC.
因?yàn)?i>AB=BC,所以O是AC的中點(diǎn),
所以OE∥PA.
同理OF∥AD.
又OE∩OF=O,PA∩AD=A,
所以平面OEF∥平面PDA.
(2)證明:因?yàn)?i>OF∥AD,AD⊥CD,
所以OF⊥CD.
又PO⊥平面ADC,CD⊂平面ADC,
所以PO⊥CD.
又OF∩PO=O,所以CD⊥平面POF.
(3)存在,事實(shí)上記點(diǎn)E為M即可.
因?yàn)?i>CD⊥平面POF,PF⊂平面POF,
所以CD⊥PF.
又E為PC的中點(diǎn),所以EF=PC,
同理,在直角三角形POC中,EP=EC=OE=PC,
所以點(diǎn)E到四個(gè)點(diǎn)P,O,C,F的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=|x-a|.
(1) 若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(2) 在(1)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,且當(dāng)x∈(-∞,0)時(shí),f(x)+xf′(x)<0成立,a=(20.2)·f(20.2),b=(logπ3)·f(logπ3),c=(log39)·f(log39),則a,b,c的大小關(guān)系是( )
A.b>a>c B.c>a>b
C.c>b>a D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知常數(shù)a,b,c都是實(shí)數(shù),f(x)=ax3+bx2+cx-34的導(dǎo)函數(shù)為f′ (x),f′(x)≤0的解集為{x|-2≤x≤3},若f(x)的極小值等于-115,則a的值是( )
A.- B.
C.2 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖是一個(gè)空間幾何體的三視圖,其中正視圖和側(cè)視圖都是半徑為2的半圓,俯視圖是半徑為2的圓,則該幾何體的體積等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知全集U={0,1,2,3,4},A={1,2,3},B={2,4},則如圖陰影部分表示的集合為( )
A.{0,2} B.{0,1,3}
C.{1,3,4} D.{2,3,4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=若函數(shù)y=f(x)-2有3個(gè)零點(diǎn),則實(shí)數(shù)a的值為( )
A.-4 B.-2
C.0 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
現(xiàn)有含三個(gè)元素的集合,既可以表示為,也可表示為{a2,a+b,0},則a2 013+b2 013=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com