11.設(shè)數(shù)列{an}滿足a1=4,2$\sqrt{{a}_{n}}$=$\sqrt{{a}_{n}{a}_{n+1}}$+1,n∈N*
(1)證明:數(shù)列{$\frac{1}{\sqrt{{a}_{n}}-1}$}是等差數(shù)列;
(2)求使lga1+lga2+…+lgan>4成立的最小正整數(shù)n的值.

分析 (1)由2$\sqrt{{a}_{n}}$=$\sqrt{{a}_{n}{a}_{n+1}}$+1,可得$\sqrt{{a}_{n+1}}$=$\frac{2\sqrt{{a}_{n}}-1}{\sqrt{{a}_{n}}}$,$\frac{1}{\sqrt{{a}_{n+1}}-1}$=1+$\frac{1}{\sqrt{{a}_{n}}-1}$,即可證明.
(2)由(1)可得$\frac{1}{\sqrt{{a}_{n}}-1}$=1+(n-1)=n,化為an=$(\frac{n+1}{n})^{2}$,可得lgan=2[lg(n+1)-lgn],利用“累加求和”即可得出.

解答 (1)證明:∵2$\sqrt{{a}_{n}}$=$\sqrt{{a}_{n}{a}_{n+1}}$+1,
∴$\sqrt{{a}_{n+1}}$=$\frac{2\sqrt{{a}_{n}}-1}{\sqrt{{a}_{n}}}$,
∴$\frac{1}{\sqrt{{a}_{n+1}}-1}$=$\frac{1}{\frac{2\sqrt{{a}_{n}}-1}{\sqrt{{a}_{n}}}}$=$\frac{\sqrt{{a}_{n}}}{\sqrt{{a}_{n}}-1}$=$\frac{\sqrt{{a}_{n}}-1+1}{\sqrt{{a}_{n}}-1}$=1+$\frac{1}{\sqrt{{a}_{n}}-1}$,
∴$\frac{1}{\sqrt{{a}_{n+1}}-1}$-$\frac{1}{\sqrt{{a}_{n}}-1}$=1,
∴數(shù)列{$\frac{1}{\sqrt{{a}_{n}}-1}$}是等差數(shù)列,首項為1,公差為1;
(2)解:由(1)可得$\frac{1}{\sqrt{{a}_{n}}-1}$=1+(n-1)=n,
解得an=$(\frac{n+1}{n})^{2}$,
∴l(xiāng)gan=2[lg(n+1)-lgn],
∴l(xiāng)ga1+lga2+…+lgan=2[lg(n+1)-lgn]+2[lgn-lg(n-1)]+…+2[lg2-lg1]=2lg(n+1).
∴l(xiāng)ga1+lga2+…+lgan>4,即2lg(n+1)>4,化為lg(n+1)>2.
∴n+1>102,
解得n>99.
∴使lga1+lga2+…+lgan>4成立的最小正整數(shù)n=100.

點評 本題考查了遞推關(guān)系的應(yīng)用、等差數(shù)列的通項公式、“累加求和”,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.求下列函數(shù)的定義域和值域.
(1)y=f(x)=log3(x2-3x-4);
(2)y=log3(x2+4x+7).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在-180°~360°范圍內(nèi),與2000°角終邊相同的角為200°和-160°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若$\frac{sinα+cosα}{sinα-cosα}=2$,則sin(α-5π)•cos(3π-α)等于( 。
A.$\frac{3}{4}$B.$\frac{3}{10}$C.±$\frac{3}{10}$D.-$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在樣本頻率分布直方圖中,共有9個小長方形,若中間一個長方形的面積等于其他8個小長方形的面積和的$\frac{2}{5}$,且樣本容量為280,則中間一組的頻數(shù)為80.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.正方體ABCD-A1B1C1D1的棱長為1,E為BB1的中點,F(xiàn)為AD的中點,以DA,DC,DD1為x軸、y軸、z軸建立空間直角坐標系,設(shè)平面D1EF的法向量為(ak,bk,ck)(k≠0),則平面D1EF的法向量是(4k,-3k,2k)(k≠0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知當t=n時,f(t)=t+$\frac{36}{t}$(t>0)取得最小值,則二項式(x-$\frac{1}{x}$)n的展開式中x2的系數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.數(shù)列{an}的通項公式為an=(-1)n(2n-1)2,則其前50項之和S50=5000.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={x|0≤x≤2},B={y|y=2x,x>0},則A∩B=( 。
A.(1,2]B.[0,1)∪(2,+∞)C.[0,1]D.[0,2]

查看答案和解析>>

同步練習冊答案