【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(1)求所取3張卡片上的數(shù)字完全相同的概率;
(2)X表示所取3張卡片上的數(shù)字的中位數(shù),求X的分布列與數(shù)學期望.(注:若三個數(shù)字a,b,c滿足a≤b≤c,則稱b為這三個數(shù)的中位數(shù).)

【答案】
(1)解:由古典概型的概率計算公式得所求概率為

P= ,


(2)解:由題意知X的所有可能取值為1,2,3,且

P(X=1)= ,

P(X=2)= ,

P(X=3)= ,

所以X的分布列為:

X

1

2

3

P

所以E(X)=


【解析】第一問是古典概型的問題,要先出基本事件的總數(shù)和所研究的事件包含的基本事件個數(shù),然后代入古典概型概率計算公式即可,相對簡單些;第二問應先根據(jù)題意求出隨機變量X的所有可能取值,此處應注意所取三張卡片可能來自于相同數(shù)字(如1或2)或不同數(shù)字(1和2、1和3、2和3三類)的卡片,因此應按卡片上的數(shù)字相同與否進行分類分析,然后計算出每個隨機變量所對應事件的概率,最后將分布列以表格形式呈現(xiàn).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓的左右焦點,在橢圓上移動時 的內(nèi)心的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了增強消防安全意識,某中學對全體學生做了一次消防知識講座,從男生中隨機抽取50人,從女生中隨機抽取70人參加消防知識測試,統(tǒng)計數(shù)據(jù)得到如下列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

男生

15

35

50

女生

30

40

70

總計

45

75

120

(Ⅰ)試判斷是否有的把握認為消防知識的測試成績優(yōu)秀與否與性別有關;

附:

K2=

(Ⅱ)為了宣傳消防安全知識,從該校測試成績獲得優(yōu)秀的同學中采用分層抽樣的方法,隨機選出6名組成宣傳小組,現(xiàn)從這6人中隨機抽取2名到校外宣傳,求到校外宣傳的同學中至少有1名是男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是( )

A. 至少有一個白球;至少有一個紅球 B. 至少有一個白球;紅、黑球各一個

C. 恰有一個白球;一個白球一個黑球 D. 至少有一個白球;都是白球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學生中,用分層抽樣的方法選取28人參加一項活動,則從身高在[120,130)內(nèi)的學生中選取的人數(shù)應為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過點A(-2,0),B(0,2),且圓心在直線y=x上,又直線l:y=kx+1與圓相交于P、Q兩點.

(1)求圓的方程;

(2)若,求實數(shù)k的值;

(3)過點作動直線交圓,兩點.試問:在以為直徑的所有圓中,是否存在這樣的圓,使得圓經(jīng)過點?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(ax+ )+
(1)若a>0,且f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)是否存在實數(shù)a,使得函數(shù)f(x)在(0,+∞)上的最小值為1?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,,函數(shù)的最小值為

(1)當時,求的值;

(2)求;

(3)已知函數(shù)為定義在R上的增函數(shù),且對任意的都滿足

問:是否存在這樣的實數(shù)m,使不等式 +對所有

恒成立,若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標方程為ρ=2 sin( ),直線C的極坐標方程為ρsinθ=1,射線θ=φ,θ= +φ(φ∈[0,π])與曲線C1分別交異于極點O的兩點A,B.
(I)把曲線C1和C2化成直角坐標方程,并求直線C2被曲線C1截得的弦長;
(II)求|OA|2+|OB|2的最小值.

查看答案和解析>>

同步練習冊答案