數(shù)列1+3q+5q2+7q3+9q4=
 
分析:先看當(dāng)q=1時(shí),數(shù)列為等差數(shù)列,根據(jù)等差數(shù)列的求和公式可求的數(shù)列的和;再看q≠1時(shí),利用錯(cuò)位想減法求和,最后綜合答案可得.
解答:解:當(dāng)q=1時(shí),數(shù)列為1+3+5+7+9=
(1+9)×5
2
=25
當(dāng)q≠1時(shí)設(shè)T=1+3q+5q2+7q3+9q4,qT=q+3q2+5q3+7q4+9q5
T-qT=1+2q+2q2+2q3+2q4-9q5
∴T=
9q6-11q5+q+1
(1-q)2

故答案為
9q6-11q5+q+1
(1-q)2
(q≠1)
25(q=1)
點(diǎn)評(píng):本題主要考查了數(shù)列的求和問題.要基本的等差和等比數(shù)列的求和公式外,還應(yīng)熟練掌握如裂項(xiàng)法、錯(cuò)位相減法、疊加法等求和方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列1+3q+5q2+7q3+9q4=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 數(shù)列》2010年單元測(cè)試卷(解析版) 題型:填空題

數(shù)列1+3q+5q2+7q3+9q4=   

查看答案和解析>>

同步練習(xí)冊(cè)答案