【題目】已知函數,的在數集上都有定義,對于任意的,當時,或成立,則稱是數集上的限制函數.
(1)求在上的限制函數的解析式;
(2)證明:如果在區(qū)間上恒為正值,則在上是增函數;[注:如果在區(qū)間上恒為負值,則在區(qū)間上是減函數,此結論無需證明,可以直接應用]
(3)利用(2)的結論,求函數在上的單調區(qū)間.
【答案】(1);(2)證明見解析;(3)見解析.
【解析】
(1)由題目給出的條件,構造,根據條件驗證可得所求函數;
(2)運用反證法,即可得證;
(3)求得,根據第二問結論由大于0,可得增區(qū)間;小于0,可得減區(qū)間.
解:(1)任意的,;
由于任意性:;
故構造;
由冪函數性質得在單調遞減,
且易得:,滿足題意,
故:;
(2)運用反證法,即假設在上不是增函數,
若在上是減函數,可得在區(qū)間上恒為負值;
若在上是常數函數,可得在區(qū)間上恒為零;
若在上是有增有減,可得在區(qū)間上可能為正可能為負;
這與在區(qū)間上恒為正值矛盾,故在上是增函數;
(3)任意的,當,
,
構造;
任取,,
,
,
故:,
是數集上的限制函數,
,解得
利用(2)結論,當函數單調遞增,
,解得
利用(2)結論,當函數單調遞減.
科目:高中數學 來源: 題型:
【題目】下列命題中:
①已知點,動點滿足,則點的軌跡是一個圓;
②已知,則動點的軌跡是雙曲線;
③兩個隨機變量的線性相關性越強,則相關系數的絕對值就越接近于1;
④在平面直角坐標系內,到點和直線的距離相等的點的軌跡是拋物線;
正確的命題是_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】采用系統(tǒng)抽樣方法從1000人中抽取50人做問卷調查,為此將他們隨機編號1,, ,1000,適當分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為8,抽到的50人中,編號落入區(qū)間的人做問卷A,編號落入區(qū)間的人做問卷B,其余的人做問卷C,則抽到的人中,做問卷C的人數為( )
A. 12 B. 13 C. 14 D. 15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如右圖,一個直徑為1的小圓沿著直徑為2的大圓內壁的逆時針方
向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當小圓這
樣滾過大圓內壁的一周,點M,N在大圓內所繪出的圖形大致是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小組有7個同學,其中4個同學從來沒有參加過天文研究性學習活動,3個同學曾經參加過天文研究性學習活動.
(1)現(xiàn)從該小組中隨機選2個同學參加天文研究性學習活動,求恰好選到1個曾經參加過天文研究性學習活動的同學的概率;
(2)若從該小組隨機選2個同學參加天文研究性學習活動,則活動結束后,該小組有參加過天文研究性學習活動的同學個數是一個隨機變量,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標平面內,直線l過點P(1,1),且傾斜角α=.以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知圓C的極坐標方程為ρ=4sin θ.
(1)求圓C的直角坐標方程;
(2)設直線l與圓C交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內,,三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進行了考核評估,考評分數達到80分及其以上的單位被稱為“星級”環(huán)保單位,未達到80分的單位被稱為“非星級”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個單位,其考評分數如下:
類行業(yè):85,82,77,78,83,87;
類行業(yè):76,67,80,85,79,81;
類行業(yè):87,89,76,86,75,84,90,82.
(Ⅰ)計算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個數;
(Ⅱ)若從抽取的類行業(yè)這6個單位中,再隨機選取3個單位進行某項調查,求選出的這3個單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一種作圖工具如圖1所示.是滑槽的中點,短桿可繞轉動,長桿通過處鉸鏈與連接,上的栓子可沿滑槽AB滑動,且,.當栓子在滑槽AB內作往復運動時,帶動繞轉動一周(不動時,也不動),處的筆尖畫出的曲線記為.以為原點,所在的直線為軸建立如圖2所示的平面直角坐標系.
(Ⅰ)求曲線C的方程;
(Ⅱ)設動直線與兩定直線和分別交于兩點.若直線總與曲線有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是公差為正數的等差數列,數列為等比數列,且,,.
(1)求數列、的通項公式;
(2)設數列是由所有的項,且的項組成的數列,且原項數先后順序保持不變,求數列的前2019項的和;
(3)對任意給定的是否存在使成等差數列?若存在,用分別表示和(只要寫出一組即可);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com