【題目】已知某企業(yè)近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:

1)試問這3年的前7個月中哪個月的月平均利潤最高?

2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;

3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第38月份的利潤.

月份x

1

2

3

4

利潤y(單位:百萬元)

4

4

6

6

相關(guān)公式: ,

【答案】(1)5月和6月的平均利潤最高(2)詳見解析(3)940萬元.

【解析】試題分析:

(1)由折線圖,通過計算每個月的平均利潤可得;

(2)分別計算出第1、2、3年前七個月的總利潤,由計算結(jié)果即可分析趨勢;

(3)由題意將數(shù)據(jù)代入公式,列出回歸方程求解即可。

試題解析:

(1)由折線圖可知5月和6月的平均利潤最高.

(2)第1年前7個月的總利潤為(百萬元),

第2年前7個月的總利潤為(百萬元),

第3年前7個月的總利潤為(百萬元),

所以這3年的前7個月的總利潤呈上升趨勢.

(3)∵, , ,

,

,

時, (百萬元),∴估計8月份的利潤為940萬元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ x3+bx2+cx+bc.
(1)若函數(shù)f(x)在x=1處有極值﹣ ,試確定b、c的值;
(2)若b=1,f(x)存在單調(diào)遞增區(qū)間,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnxax)有兩個極值點,則實數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=kx2+(3+k)x+3,其中k為常數(shù),且k≠0.
(1)若f(2)=3,求函數(shù)f(x)的表達式;
(2)在(1)的條件下,設函數(shù)g(x)=f(x)﹣mx,若g(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(3)是否存在k使得函數(shù)f(x)在[﹣1,4]上的最大值是4?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=lnx+ax2﹣ax+5,a∈R.
(1)若函數(shù)f(x)在x=1處有極值,求實數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高二年級共有1600人,現(xiàn)統(tǒng)計他們某項任務完成時間介于30分鐘到90分鐘之間,圖中是統(tǒng)計結(jié)果的頻率分布直方圖.

(1)求平均值、眾數(shù)、中位數(shù);

(2)若學校規(guī)定完成時間在分鐘內(nèi)的成績?yōu)?/span>等;完成時間在分鐘內(nèi)的成績?yōu)?/span>等;完成時間在分鐘內(nèi)的成績?yōu)?/span>等,按成績分層抽樣從全校學生中抽取10名學生,則成績?yōu)?/span>等的學生抽取人數(shù)為?

(3)在(2)條件下抽取的成績?yōu)?/span>等的學生中再隨機選取兩人,求兩人中至少有一人完成任務時間在分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對具有線性相關(guān)關(guān)系的兩個變量y與x進行回歸分析,得到一組樣本數(shù)據(jù)(x1 , y1),(x2 , y2)…(xn , yn),則下列說法中不正確的是(
A.若最小二乘法原理下得到的回歸直線方程 =0.52x+ ,則y與x具有正相關(guān)關(guān)系
B.殘差平方和越小的模型,擬合的效果越好
C.在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適
D.用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小說明擬合效果越好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(CUT)=( 。
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人的各科成績?nèi)缜o葉圖所示,則下列說法正確的是(
A.甲的中位數(shù)是89,乙的中位數(shù)是98
B.甲的各科成績比乙各科成績穩(wěn)定
C.甲的眾數(shù)是89,乙的眾數(shù)是98
D.甲、乙二人的各科成績的平均分不相同

查看答案和解析>>

同步練習冊答案