【題目】若函數(shù)f(x)=loga(x+ )是奇函數(shù),則a=

【答案】
【解析】解:∵函數(shù) 是奇函數(shù),
∴f(x)+f(﹣x)=0
即loga(x+ )+loga(﹣x+ )=0
∴l(xiāng)oga(x+ )×(﹣x+ )=0
∴x2+2a2﹣x2=1,即2a2=1,
∴a=±
又a對數(shù)式的底數(shù),a>0
∴a=
故應(yīng)填
【考點精析】利用函數(shù)奇偶性的性質(zhì)和對數(shù)的運算性質(zhì)對題目進行判斷即可得到答案,需要熟知在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇;①加法:②減法:③數(shù)乘:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:f(x)= 在區(qū)間(1,+∞)上是減函數(shù);命題q;x1x2是方程x2﹣ax﹣2=0的兩個實根,不等式m2+5m﹣3≥|x1﹣x2|對任意實數(shù)α∈[﹣1,1]恒成立;若¬p∧q為真,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小張在淘寶網(wǎng)上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量t(條)是售價x(元)(x∈Z+)的一次函數(shù),且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤y(元)關(guān)于售價x(元)(x∈Z+)的函數(shù)關(guān)系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數(shù)量無關(guān)),試問小張應(yīng)該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤﹣總管理、倉儲等費用)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有n2,n∈N*)給定的不同的數(shù)隨機排成一個下圖所示的三角形數(shù)陣:

設(shè)Mk是第k行中的最大數(shù),其中1≤kn,k∈N*.記M1M2Mn的概率為pn

(1)求p2的值;

(2)證明:pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設(shè)小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中ab

(1)當(dāng)a=90時,求紙盒側(cè)面積的最大值;

(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC交⊙O于點E.

(1)若D為AC的中點,證明:DE是⊙O的切線;
(2)若OA= CE,求∠ACB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于R上的可導(dǎo)函數(shù)f(x),若a>b>1且有(x﹣1)f′(x)≥0,則必有(
A.f(a)+f(b)<2f(1)
B.f(a)+f(b)≤2f(1)
C.f(a)+f(b)≥2f(1)
D.f(a)+f(b)>2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:設(shè)上的可導(dǎo)函數(shù),若為增函數(shù),則稱上的凸函數(shù).

(1)判斷函數(shù)是否為凸函數(shù);

(2)設(shè)上的凸函數(shù),求證:若, ,則恒有成立;

(3)設(shè) , ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了體現(xiàn)國家“民生工程”,某市政府為保障居民住房,現(xiàn)提供一批經(jīng)濟適用房.現(xiàn)有條件相同的甲、已、丙、丁四套住房供A、B、C三人自主申請,他們的申請是相互獨立的.
(1)求A、B兩人都申請甲套住房的概率;
(2)求A、B兩人不申請同一套住房的概率;
(3)設(shè)3名參加選房的人員中選擇甲套住房的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案