精英家教網 > 高中數學 > 題目詳情

 (本小題滿分12分)
橢圓的離心率,過右焦點的直線與橢圓相交
AB兩點,當直線的斜率為1時,坐標原點到直線的距離為
⑴求橢圓C的方程;
⑵橢圓C上是否存在點,使得當直線繞點轉到某一位置時,有
立?若存在,求出所有滿足條件的點的坐標及對應的直線方程;若不存在,請說明理由.

解:⑴∵到直線的距離為,
,∴.                      ………2分
,∴,∴
∴橢圓C的方程為.                               ………5分
⑵設A(,),B(,),
,消去
,∴
,∴,∴
點坐標代入橢圓得,
,∴
時,,直線,
時,,直線. …………12分

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設橢圓為正整數,為常數.曲線在點處的切線方程為.
(Ⅰ)求函數的最大值;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓的一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,且離心率且過橢圓右焦點的直線與橢圓C交于兩點.
(1)求橢圓C的方程;
(2)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.
(3)若AB是橢圓C經過原點O的弦, MNAB,求證:為定值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知橢圓以坐標原點為中心,坐標軸為對稱軸,且該橢圓以拋物線的焦點為其一個焦點,以雙曲線的焦點為頂點。
(1)求橢圓的標準方程;
(2)已知點,且分別為橢圓的上頂點和右頂點,點是線段上的動點,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓x2+(m+3)y2m(m>0)的離心率e,求m的值及橢圓的長軸和短軸的長及頂點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓的焦點分別為,直線軸于點,且

(1)試求橢圓的方程;
(2)過分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形面積的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

22.(本題滿分15分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;


 
(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜
率為k的直線l經過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

在極坐標系中,圓的圓心到極軸的距離為(   )

A. B. C. D.

查看答案和解析>>

同步練習冊答案