(1)已知數(shù)列{an}滿足a1=1an+1=2an+1,寫出該數(shù)列的前五項及它的通項公式.

  (2)已知數(shù)列{an}滿足a1=1an=an-1+ (n2)寫出該數(shù)列的前五項及它的通項公式.

答案:
解析:

(1)   由遞推公式an+1=2an+1a1=1可得:a2=3,a3=7,a4=15,a5=31

  ∴ 該數(shù)列是:13,715,31,…

  觀察結(jié)構(gòu),可以寫成:

  a1=1=21-1a2=3=22-1,

  a3=7=23-1,a4=15=24-1

  a5=31=25-1,

  歸納可得an=2n-1經(jīng)驗證,a1也滿足an=2n-1

  (2)由遞推公式a1=1a2=1+,

  a3=,

  a4=,a5=

  故數(shù)列的前五項分別為:1,,,,又an-an-1=(n2)

  ∴ an=(an-an-1)+(an-1-an-2)++(a3-a2)+(a2-a1)+a1

  =

  

  

  ∴ an=2-


提示:

用遞推法求通項公式,本例(1)為歸納法,(2)是數(shù)列求和的“拆項相消法”.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

(1)已知數(shù)列{an}滿足a1=1,an+1=2an+1,寫出該數(shù)列的前五項及它的通項公式.

  (2)已知數(shù)列{an}滿足a1=1,an=an-1+ (n2)寫出該數(shù)列的前五項及它的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計必修五數(shù)學(xué)蘇教版 蘇教版 題型:044

(1)已知數(shù)列{an}滿足a1=1,an+1=2an+1,寫出該數(shù)列的前5項及它的一個通項公式.

(2)已知數(shù)列{an}滿足a1=1,anan-1+(n≥2),寫出該數(shù)列前5項及它的一個通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省南通市通州區(qū)2012屆高三4月查漏補缺專項檢測數(shù)學(xué)試題 題型:044

已知數(shù)列{an}單調(diào)遞增,且各項非負,對于正整數(shù)K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的項,則稱數(shù)列{an}為“K項可減數(shù)列”.

(1)已知數(shù)列{an}是首項為2,公比為2的等比數(shù)列,且數(shù)列{an-2}是“K項可減數(shù)列”,試確定K的最大值;

(2)求證:若數(shù)列{an}是“K項可減數(shù)列”,則其前n項的和Snan(n=1,2,…,K);

(3)已知{an}是各項非負的遞增數(shù)列,寫出(2)的逆命題,判斷該逆命題的真假,

并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知數(shù)列{an},其中cn=2n+3n,且數(shù)列{cn+1-pcn}為等比數(shù)列,求常數(shù)p;

(2)設(shè){an}、{bn}是公比不相等的兩個等比數(shù)列,cn=an+bn,證明數(shù)列{cn}不是等比數(shù)列.

   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(四川卷)解析版(理) 題型:解答題

 [番茄花園1] 

已知數(shù)列{an}滿足a1=0,a2=2,且對任意m、nN*都有

a2m-1a2n-1=2amn-1+2(mn)2

(Ⅰ)求a3,a5;

(Ⅱ)設(shè)bna2n+1a2n-1(nN*),證明:{bn}是等差數(shù)列;

(Ⅲ)設(shè)cn=(an+1an)qn-1(q≠0,nN*),求數(shù)列{cn}的前n項和Sn.

 

 

 


 [番茄花園1]1.

查看答案和解析>>

同步練習(xí)冊答案