【題目】若對任意的實(shí)數(shù)k,b,函數(shù)與直線總相切,則稱函數(shù)為“恒切函數(shù)”.
(1)判斷函數(shù)是否為“恒切函數(shù)”;
(2)若函數(shù)是“恒切函數(shù)”,求實(shí)數(shù)m,n滿足的關(guān)系式;
(3)若函數(shù)是“恒切函數(shù)”,求證:.
【答案】(1)函數(shù)為“恒切函數(shù)”(2)(3)證明見解析
【解析】
(1)設(shè)切點(diǎn)為,由導(dǎo)數(shù)的幾何意義,以及切點(diǎn)為切線和函數(shù)圖象的公共點(diǎn),“恒切函數(shù)”,即為,根據(jù)關(guān)系式,求解即可;
(2)設(shè)切點(diǎn)為,由,求出,即可得出結(jié)論;
(3)設(shè)切點(diǎn)為,由,得到,先求出關(guān)于切點(diǎn)方程的解或解的范圍,再由,即可求出的取值范圍.
(1)函數(shù)為“恒切函數(shù)”,設(shè)切點(diǎn)為.
則,∴
對于函數(shù).
設(shè)切點(diǎn)為,∴,
解得:.∴是“恒切函數(shù)”.
(2)若函數(shù)是“恒切函數(shù)”,
設(shè)切點(diǎn)為.
,
解得:,即.
∴實(shí)數(shù)m,n滿足的關(guān)系式為:.
(3)函數(shù)是“恒切函數(shù)”,設(shè)切點(diǎn)為.
∵,∴,
∴.
考查方程的解,設(shè).
∵,令,解得:.
∴當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
∴.
1°當(dāng)時(shí)
∵.
∴在上有唯一零點(diǎn).
又∵,
∴.
2°當(dāng)時(shí)∵,
∴在上有唯一零點(diǎn)0,∴.
綜上可知:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,給出下列命題:
①當(dāng)時(shí),;
②函數(shù)有2個(gè)零點(diǎn);
③的解集為;
④,,都有.
其中真命題的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向左平移個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到的圖象,下面四個(gè)結(jié)論正確的是( )
A. 函數(shù)在區(qū)間上為增函數(shù)
B. 將函數(shù)的圖象向右平移個(gè)單位后得到的圖象關(guān)于原點(diǎn)對稱
C. 點(diǎn)是函數(shù)圖象的一個(gè)對稱中心
D. 函數(shù)在上的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求不等式的解集;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某職稱晉級評定機(jī)構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失敗.
晉級成功 | 晉級失敗 | 合計(jì) | |
男 | 16 | ||
女 | 50 | ||
合計(jì) |
(1)求圖中的值;
(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級成功”與性別有關(guān)?
(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(參考公式:,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九世紀(jì)末:法國學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長長于這個(gè)圓的內(nèi)接等邊三角形邊長的概率是多少?”貝特朗用“隨機(jī)半徑”“隨機(jī)端點(diǎn)”“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)為圓上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn),連接,所得弦長大于圓的內(nèi)接等邊三角形邊長的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,,且,證明:(為自然對數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com