A. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | B. | f(x)=1,g(x)=x2 | ||
C. | f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$ g(t)=|t| | D. | f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$ |
分析 根據(jù)兩個函數(shù)的定義域相同,對應關系也相同,即可判斷兩個函數(shù)是相等的函數(shù).
解答 解:對于A,f(x)=$\sqrt{{x}^{2}}$=|x|的定義域是R,g(x)=${(\sqrt{x})}^{2}$=x的定義域是[0,+∞),
定義域不同,對應關系不同,不是相同函數(shù);
對于B,f(x)=1的定義域是R,g(x)=x2的定義域是R,對應關系不同,不是相同函數(shù);
對于C,f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$的定義域是R,g(t)=|t|=$\left\{\begin{array}{l}{t,t≥0}\\{-t,t<0}\end{array}\right.$的定義域是R,
定義域相同,對應關系也相同,是相同函數(shù);
對于D,f(x)=x+1的定義域是R,g(x)=$\frac{{x}^{2}-1}{x-1}$=x+1的定義域是{x|x≠0},
定義域不同,不是相同函數(shù).
故選:C
點評 本題考查了判斷兩個函數(shù)是否為相等函數(shù)的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | k<-1 | B. | k≤-1 | C. | k>2 | D. | k≥2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{3π}{16}$ | C. | $\frac{π}{4}$ | D. | $\frac{3}{16}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分數(shù)段 | [0~80) | [80~100) | [100~120) | [120~140) | [140~150] |
人數(shù) | 300 | 130 | 180 | 220 | 170 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com