(Ⅰ)解:函數(shù)的定義域為(0,+∞),求導(dǎo)數(shù)
,
令f′(x)=0得x=e
1-a,
當(dāng)x∈(0,e
1-a)時,f′(x)>0,∴f(x)是增函數(shù);
當(dāng)x∈(e
1-a,+∞),f′(x)<0,∴f(x)是減函數(shù);
∴f(x)在x=e
1-a處取得極大值,f(x)
極大值=f(e
1-a)=e
a-1,無極小值.
(Ⅱ)解:①當(dāng)e
1-a<e
2,即a>-1時,
由(Ⅰ)知,f(x)在(0,e
1-a)上是增函數(shù),在(e
1-a,e
2)上是減函數(shù),
∴
…(7分)
∵若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e
2]上有公共點(diǎn),
∴e
a-1≥1
∴a≥1
∵a>-1,∴a≥1
②當(dāng)e
1-a≥e
2,即a≤-1時,f(x)在區(qū)間(0,e
2]上是增函數(shù),
∴f(x)在區(qū)間(0,e
2]上的最大值為f(e
2)=
∴原問題等價于
∴a≥e
2-2
∵a≤-1,∴無解
綜上,實數(shù)a的取值范圍是[1,+∞).
(Ⅲ)證明:令a=1,由(Ⅰ)知,
,∴l(xiāng)nx≤x-1,
∵a
1=1,假設(shè)
,則a
k+1=lna
k+a
k+2>1,故
從而a
n+1=lna
n+a
n+2≤2a
n+1
∴
即
,
∴
.
分析:(Ⅰ)確定函數(shù)的定義域,求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,從而可得函數(shù)的極值;
(Ⅱ)分類討論:①當(dāng)e
1-a<e
2,即a>-1時,f(x)在(0,e
1-a)上是增函數(shù),在(e
1-a,e
2)上是減函數(shù),可得函數(shù)的最值,利用函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e
2]上有公共點(diǎn),可得實數(shù)a的取值范圍;
②當(dāng)e
1-a≥e
2,即a≤-1時,f(x)在區(qū)間(0,e
2]上是增函數(shù),可得函數(shù)的最值,利用函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e
2]上有公共點(diǎn),從而可得結(jié)論;
(Ⅲ)先證明lnx≤x-1,從而可證a
n+1=lna
n+a
n+2≤2a
n+1,由此可證結(jié)論.
點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)而得單調(diào)性與極值,考查分類討論的數(shù)學(xué)思想,考查不等式的證明,屬于中檔題.