若a1>0,a1≠1,an+1=
2an
1+an
(n=1,2,…)
(1)求證:an+1≠an;
(2)令a1=
1
2
,寫出a2、a3、a4、a5的值,觀察并歸納出這個(gè)數(shù)列的通項(xiàng)公式an
分析:(1)采用反證法證明,先假設(shè)兩種相等,代入已知的等式中即可求出an的值為常數(shù)0或1,進(jìn)而得到此數(shù)列為是0或1的常數(shù)列,與已知a1>0,a1≠1矛盾,所以假設(shè)錯(cuò)誤,兩種不相等;
(2)把n=1及a1=
1
2
代入已知的等式即可求出a2的值,把n=2及a2的值代入已知的等式即可求出a3的值,把n=3及a3的值代入已知等式即可求出a4的值,把n=4及a4的值代入已知的等式即可求出a5的值,然后把求出的五項(xiàng)的值變形后,即可歸納總結(jié)得到這個(gè)數(shù)列的通項(xiàng)公式an
解答:解:(1)證明:若an+1=an,
2an
1+an
=an,解得an=0或1.
從而an=an-1=…a2=a1=0或1,與題設(shè)a1>0,a1≠1相矛盾,
故an+1≠an成立.
(2)由a1=
1
2
,得到a2=
1
2
1+
1
2
=
2
3
=
22-1
22-1+1
,
a3=
2
3
1+
2
3
=
4
5
=
23-1
23-1+1
,
a4=
4
5
1+
4
5
=
8
9
=
24-1
24-1+1
,
a5=
8
9
1+
8
9
=
16
17
=
25-1
25-1+1

…,
則an=
2n-1
2n-1+1
(n∈N*).
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用反證法對(duì)命題進(jìn)行證明的能力,會(huì)根據(jù)一組數(shù)據(jù)的特點(diǎn)歸納總結(jié)得出一般性的規(guī)律,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a1>0,a1≠1,an+1=
2an
1+an
(n=1,2,…)
(1)求證:an+1≠an;
(2)令a1=
1
2
,寫出a2、a3、a4、a5的值,觀察并歸納出這個(gè)數(shù)列的通項(xiàng)公式an;
(3)證明:存在不等于零的常數(shù)p,使{
an+P
an
}
是等比數(shù)列,并求出公比q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若a1>0,a1≠1,an+1=
2an
1+an
(n=1,2,…)
(1)求證:an+1≠an;
(2)令a1=
1
2
,寫出a2、a3、a4、a5的值,觀察并歸納出這個(gè)數(shù)列的通項(xiàng)公式an;
(3)證明:存在不等于零的常數(shù)p,使{
an+P
an
}
是等比數(shù)列,并求出公比q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年福建省寧德市霞浦一中高二(下)第一次月考數(shù)學(xué)試卷(文科)(實(shí)驗(yàn)班)(解析版) 題型:解答題

若a1>0,a1≠1,an+1=(n=1,2,…)
(1)求證:an+1≠an;
(2)令a1=,寫出a2、a3、a4、a5的值,觀察并歸納出這個(gè)數(shù)列的通項(xiàng)公式an;
(3)證明:存在不等于零的常數(shù)p,使是等比數(shù)列,并求出公比q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):6 不等式、推理與證明 質(zhì)量檢測(cè)(2)(解析版) 題型:解答題

若a1>0,a1≠1,an+1=(n=1,2,…)
(1)求證:an+1≠an
(2)令a1=,寫出a2、a3、a4、a5的值,觀察并歸納出這個(gè)數(shù)列的通項(xiàng)公式an

查看答案和解析>>

同步練習(xí)冊(cè)答案