8.若x<0,則x+$\frac{1}{x}$的最大值是(  )
A.-1B.-2C.1D.2

分析 變形利用基本不等式的性質(zhì)即可得出.

解答 解:∵x<0,∴-x>0.
∴x+$\frac{1}{x}$=-$(-x+\frac{1}{-x})$$≤-2\sqrt{(-x)•\frac{1}{-x}}$=-2,當(dāng)且僅當(dāng)x=-1時(shí)取等號(hào).
∴x+$\frac{1}{x}$的最大值是-2.
故選:B.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=$\frac{x}{{e}^{x}-1}$+$\frac{x}{2}$的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某跳高運(yùn)動(dòng)員一次試跳2米高度成功的概率是失敗的概率的4倍,且每次試跳成功與否相互之間沒(méi)有影響.
(1)求該跳高運(yùn)動(dòng)員試跳三次,第三次才成功的概率;
(2)求該跳高運(yùn)動(dòng)員在三次試跳中恰有兩次試跳成功的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是(  )
A.(18π-20)cm2cm3B.(24π-20)cm3C.(18π-28)cm23D.(24π-28)cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若復(fù)數(shù)z=$\frac{1-i}{\sqrt{2}}$,則z100+z50+1在復(fù)平面上所對(duì)應(yīng)的點(diǎn)位于y軸的負(fù)半軸上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.對(duì)某個(gè)品牌的U盤(pán)進(jìn)行壽命追蹤調(diào)查,所得情況如下面頻率分布直方圖所示.
(1)圖中縱坐標(biāo)y0處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原y0;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取20個(gè)U盤(pán),壽命為1030萬(wàn)次之間的應(yīng)抽取幾個(gè);
(3)從(2)中抽出的壽命落在1030萬(wàn)次之間的元件中任取2個(gè)元件,求事件“恰好有一個(gè)壽命為1020萬(wàn)次,一個(gè)壽命為2030萬(wàn)次”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{y-3x+1≥0}\end{array}}\right.$,則z=x-2y的最大值是(  )
A.-3B.$\frac{3}{2}$C.$\frac{3}{4}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)=2exsinx,則函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程為( 。
A.y=0B.y=2xC.y=xD.y=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)上任意一點(diǎn)A(x1,y1)處的切線l1,在其圖象上總存在異于點(diǎn)A的點(diǎn)B(x2,y2),使得在點(diǎn)B處的切線l2滿足l1∥l2,則稱函數(shù)具有“自平行性”,下列有關(guān)函數(shù)f(x)的命題:
①函數(shù)f(x)=sinx+1具有“自平行性”;
②函數(shù)f(x)=x3(-1≤x≤2)具有“自平行性”;
③函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-1(x<0)}\\{x+\frac{1}{x}(x>m)}\end{array}\right.$具有“自平行性”的充要條件為函數(shù)m=1;
④奇函數(shù)y=f(x)(x≠0)不一定具有“自平行性”;
⑤偶函數(shù)y=f(x)具有“自平行性”.
其中所有敘述正確的命題的序號(hào)是①③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案