如圖1,在直角梯形中(圖中數(shù)字表示線段的長度),將直角梯形沿折起,使平面平面,連結(jié)部分線段后圍成一個空間幾何體,如圖2.
(Ⅰ)求證:平面;(Ⅱ)求三棱錐的體積。.網(wǎng)
|
證明:(Ⅰ)證法一:取中點為,連結(jié),中,
,∴
且 (2分)
又∵且,
∴且,四邊形為平行四邊形,
∴ (4分)
∵平面,平面,
∴平面, (6分)
證法二:由圖1可知,,折疊之后平行關系不變。
∵平面,平面,
∴平面,同理平面(4分)
∵,平面,∴平面平面 。
∵平面,
∴平面 (6分)
(Ⅱ)解法1: ∵,由圖1可知 (8分)
∵平面平面,平面平面,平面, ∴平面, (10分)
由圖1可知
∴ (12分)
解法2: 由圖1可知,
∵,∴平面,
∵,點到平面的距離等于點到平面的距離為1, (8分)
由圖1可知
∴ (12分)
解法3: 過作,垂足為
由圖1可知
∵平面平面,
平面平面
平面,
∴平面,
∵平面∴,平面
由,,
, (10分)
在中,由等面積法可得,
∴ (12分)
科目:高中數(shù)學 來源:2013-2014學年山西省高三上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
如圖1,在直角梯形中,,,,. 把沿對角線折起到的位置,如圖2所示,使得點在平面上的正投影恰好落在線段上,連接,點分別為線段的中點.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值;
(3)在棱上是否存在一點,使得到點四點的距離相等?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年北京市海淀區(qū)高三5月期末練習(二模)理科數(shù)學試卷(解析版) 題型:解答題
如圖1,在直角梯形中,,,,
. 把沿對角線折起到的位置,如圖2所示,使得點在平面上的正投影恰好落在線段上,連接,點分別為線段的中點.
(I)求證:平面平面;
(II)求直線與平面所成角的正弦值;
(III)在棱上是否存在一點,使得到點四點的距離相等?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年山東省高三4月模擬理科數(shù)學試卷(解析版) 題型:解答題
如圖1, 在直角梯形中, , ,,為線段的中點. 將沿折起,使平面平面,得到幾何體,如圖2所示.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆廣東省汕頭市高二下學期期中文科數(shù)學試卷(解析版) 題型:解答題
如圖1,在直角梯形中,,,且.
現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,為的中點,如圖2.
(1)求證:∥平面;
(2)求證:平面;
(3)求點到平面的距離.
圖 圖
查看答案和解析>>
科目:高中數(shù)學 來源:2010年天津市天津一中高三下學期第五次月考數(shù)學(理) 題型:解答題
如圖1,在直角梯形中, ,
把△沿對角線折起后如圖2所示(點記為點), 點在平面上的正投影 落在線段上, 連接.
(1) 求直線與平面所成的角的大小;
(2) 求二面角的大小的余弦值.
圖1 圖2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com