【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標(biāo)準(zhǔn)是每年每次租時間不超過兩小時免費,超過兩個小時的部分每小時收費2元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙兩人獨立來該租車點租車騎游(各租一車一次).設(shè)甲、乙不超過兩小時還車的概率分別為 ;兩小時以上且不超過三小時還車的概率為 ;兩人租車時間都不會超過四小時.

(1)求甲、乙都在三到四小時內(nèi)還車的概率和甲、乙兩人所付租車費相同的概率;

(2)設(shè)甲、乙兩人所付的租車費用之和為隨機變量,求的分布列與數(shù)學(xué)期望.

【答案】1;(2)分布列見解析,數(shù)學(xué)期望是

【解析】試題分析:(1)首先求出兩個人租車時間超過三小時的概率,甲乙兩人所付的租車費用相同即租車時間相同:都不超過兩小時、都在兩小時以上且不超過三小時和都超過三小時三類求解即可.

2)隨機變量ξ的所有取值為0,246,8,由獨立事件的概率分別求概率,即可列出分布列.

試題解析:(1)由題意得,甲,乙在三小時以上且不超過四小時還車的概率分別為

記甲、乙兩人所付得租車費用相同為事件,則

所以,甲、乙兩人所付得租車費用相同的概率為

2)設(shè)甲、乙兩個所付的費用之和為可能取得值為0,24,68

,

,

分布列

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表:

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,當(dāng)價格時,日需求量的預(yù)測值為多少?

參考公式:線性歸回方程: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線平行于軸.

(1)求的單調(diào)區(qū)間;

(2)證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|2x+a>0},B={x|x2﹣2x﹣3>0}. (Ⅰ)當(dāng)a=2時,求集合A∩B;
(Ⅱ)若A∩(UB)=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)函數(shù)f(x)滿足對任意的實數(shù)x,y都有f(xy)=f(x)+f(y),且f(4)=2,求f( )的值; (Ⅱ)已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(x)在[﹣1,1]上遞增,求不等式f(x+ )+f(x﹣1)<0
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】格紙中每個正方形的邊長為1,粗線部分是一個幾何體的三視圖,則該幾何體最長棱的棱長是

A. 3 B. 6 C. D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)).在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2

(Ⅰ)求曲線C1C2的直角坐標(biāo)方程,并分別指出其曲線類型;

(Ⅱ)試判斷:曲線C1C2是否有公共點?如果有,說明公共點的個數(shù);如果沒有,請說明理由;

(Ⅲ)設(shè)是曲線C1上任意一點,請直接寫出a + 2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點是圓上的任意一點,,線段的垂直平分線與直線交于點.

(1)求點的軌跡方程;

(2)若直線與點的軌跡相切,且與圓相交于點,求直線和三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求出圓的直角坐標(biāo)方程;

(2)已知圓軸相交于 兩點,直線 關(guān)于點對稱的直線為.若直線上存在點使得,求實數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案