(本小題滿分
12分)
已知直角梯形
中,
過
作
,垂足為
,
的中點,現(xiàn)將
沿
折疊,使得
,
(1)求證:
;
(2)設四棱錐D-ABCE的體積為
V,其外接球體積為
,求V
的值.
(1)證明:取
中點
,連接
,
,
,
,
,
,
……………………6分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,菱形
的對角線交于點
,
、
分別是
、
的中點.平面
平面
,
.
求證:(1)平面
∥平面
;
(2)
⊥平面
.
(3)平面
⊥平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在正方形
中,
沿對角線
將正方形
折成一個直二面角
,則點
到直線
的距離為(
)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,平面α⊥平面β,A∈α,B∈β,AB與平面α、β所成的角分別為和,過A、B分別作兩平面交線的垂線,垂足為A′、B′,若AB=12,求A′B′的長度.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在棱長為
的正方體
中,
分別是棱
的中點.
(Ⅰ)證明:
平面
;
(Ⅱ)證明:
;
(Ⅲ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,四棱錐
的底面
為菱形,
平面
,
,
分別為
的中點,
.
(Ⅰ)求證:平面
平面
.
(Ⅱ)求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)如圖所示,正方形A
BCD與直角梯形ADEF所
在平面互相
垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2。
(1)求證:AC∥平面BEF;
(2)求四面體BDEF的體積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)在四棱錐
中,底面ABCD是矩形,PA=AD=4,AB=2,PB=
,PD=
。E是PD的中點。
(1)求證:AE⊥平面PCD;
(2)求二面角
的平面角的大小的余弦值;
(3)在線段BC上是否存在點F,使得三棱錐F—ACE的體積恰為
,
若存在,試確定點F的位置;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知菱形ABCD的邊長為2,
,S為平面ABCD外一點,
為正三角形,
,M、N分別為SB、SC的中點。
(Ⅰ)求證:平面
平面ABCD;
(Ⅱ)求二面角A—SB—C的余弦值;
(Ⅲ)求四棱錐M—ABN的體積。
查看答案和解析>>