已知:三次函數(shù)f(x)=x3+ax2+bx+c,在(-∞,-1),(2+∞)上單調(diào)增,在(-1,2)上單調(diào)減,當(dāng)且僅當(dāng)x>4時(shí),f(x)>x2-4x+5

(1)求函數(shù)f(x)的解析式;

(2)若函數(shù),求h(x)的單調(diào)區(qū)間.

答案:
解析:

解:(1)上單增,(-1,2)上單減

  有兩根-1,2

         4分

  令

  

  單調(diào)增,單調(diào)減

  故

  

  故        6分

  (2)

          8分

          10分

  當(dāng)m≤-2時(shí),-m≥2,定義域:

  恒成立,上單增;

  當(dāng)-2<m≤-1時(shí),2>-m≥1,定義域:(-m,2)∪(2,+∞)

  恒成立,上單增

  當(dāng)m>-1時(shí),-m<1,定義域:(-m,2)∪(2,+∞)

 由x>1,由x<1.

  故在(1,2),(2,+∞)上單增;在上單減        12分

  所以當(dāng)m≤-2時(shí),h(x)在(-m,+∞)上單增;

  當(dāng)時(shí),上單增;

  當(dāng)m>-1時(shí),在(1,2),(2,+∞)上單增;在(-m,1)單減        14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:三次函數(shù)f(x)=x3+ax2+bx+c,在(-∞,-1),(2,+∞)上單調(diào)增,在(-1,2)上單調(diào)減,當(dāng)且僅當(dāng)x>4時(shí),
f(x)>x2-4x+5.
(1)求函數(shù)f (x)的解析式;
(2)若函數(shù)h(x)=
f′(x)3(x-2)
-(m+1)ln(x+m)
,求h(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽省合肥市2007年高三第二次教學(xué)質(zhì)量檢測(cè) 數(shù)學(xué)文科 題型:044

已知:三次函數(shù)f(x)=x3ax2+bxc,在(-∞,-1),(2,+∞)上單調(diào)增,在(-1,2)上單調(diào)減,當(dāng)且僅當(dāng)x>4時(shí),f(x)>x2-4x+5=g(x).

(1)求函數(shù)f(x)的解析式;

(2)若函數(shù)ym與函數(shù)f(x)、g(x)的圖象共有3個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黑龍江哈爾濱市第六中學(xué)2008-2009學(xué)年度上學(xué)期期中考試高三數(shù)學(xué)試題 題型:044

(理)已知:三次函數(shù)f(x)=x3+ax2+bx+c,在(-∞,-1)(2,+∞)上單調(diào)增,在(-1,2)上單調(diào)減,當(dāng)且僅當(dāng)x>4時(shí),f(x)>x2-4x+5.

(1)求函數(shù)f(x)的解析式;

(2)若函數(shù),求h(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年黑龍江省哈爾濱六中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知:三次函數(shù)f(x)=x3+ax2+bx+c,在(-∞,-1),(2,+∞)上單調(diào)增,在(-1,2)上單調(diào)減,當(dāng)且僅當(dāng)x>4時(shí),
f(x)>x2-4x+5.
(1)求函數(shù)f (x)的解析式;
(2)若函數(shù),求h(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案