A. | $(-\frac{1}{e},+∞)$ | B. | $(-\frac{1}{e},0)$ | C. | (-e,0) | D. | (0,e) |
分析 求導(dǎo),令f′(x)=0,解得:x=-1,令f′(x)<0,求得單調(diào)遞減區(qū)間,令f′(x)>0,求得函數(shù)的單調(diào)遞增區(qū)間,當(dāng)x=-1時(shí),函數(shù)取最小值f(-1)=-e-x-a,函數(shù)f(x)=xex-a有兩個(gè)零點(diǎn),則f(-1)=-e-x-a<0,a>-$\frac{1}{e}$,由a≥0時(shí),x∈(-∞,-1)時(shí),f(x)=xex-a恒成立,不存在零點(diǎn),即可求得a的取值范圍.
解答 解:由函數(shù)f(x)=xex-a的導(dǎo)函數(shù)f(x)=(x+1)ex,
令f′(x)=0,即(x+1)ex=0,解得:x=-1,
當(dāng)x∈(-∞,-1)時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(-1,+∞)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增;
故當(dāng)x=-1時(shí),函數(shù)取最小值f(-1)=-e-1-a,
若函數(shù)f(x)=xex-a有兩個(gè)零點(diǎn),則f(-1)=-e-1-a<0,
即a>-$\frac{1}{e}$,
又a≥0時(shí),x∈(-∞,-1)時(shí),f(x)=xex-a恒成立,不存在零點(diǎn),
故a<0,
綜上可知:-$\frac{1}{e}$<a<0,
實(shí)數(shù)a的取值范圍(-$\frac{1}{e}$,0),
故選B.
點(diǎn)評 本題考查導(dǎo)數(shù)的與函數(shù)零點(diǎn)的應(yīng),考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間及最值,考查導(dǎo)數(shù)求導(dǎo)法則的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線的傾斜角為$arctan\frac{3}{4}$ | |
B. | 直線必過點(diǎn)$({1,-\frac{11}{2}})$ | |
C. | 當(dāng)t=1時(shí),直線上對應(yīng)點(diǎn)到點(diǎn)(1,2)的距離是$3\sqrt{2}$ | |
D. | 直線不經(jīng)過第二象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5+ln2}{4}$ | B. | $\frac{5-ln2}{4}$ | C. | $\frac{3+ln2}{4}$ | D. | $\frac{3-ln2}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | ±1 | C. | -3 | D. | 1或-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com