設(shè)L(A,B)表示直線(xiàn)上全體點(diǎn)組成的集合,“P是直線(xiàn)AB上的一個(gè)點(diǎn)”這句話(huà)就可以簡(jiǎn)單地寫(xiě)成______.
根據(jù)題意,L(A,B)表示直線(xiàn)上全體點(diǎn)組成的集合,“P是直線(xiàn)AB上的一個(gè)點(diǎn)”.
說(shuō)明點(diǎn)P是集合L(A,B)中的元素,
即P∈L(A,B).
故答案為:P∈L(A,B).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知L為過(guò)點(diǎn)P(-
3
3
2
,-
3
2
)
且傾斜角為30°的直線(xiàn),圓C為圓心是坐標(biāo)原點(diǎn)且半徑等于1的圓,Q表示頂點(diǎn)在原點(diǎn)而焦點(diǎn)是(
2
8
,0)
的拋物線(xiàn),設(shè)A為L(zhǎng)和C在第三象限的交點(diǎn),B為C和Q在第四象限的交點(diǎn).
(1)寫(xiě)出直線(xiàn)L、圓C和拋物線(xiàn)Q的方程,并作草圖.
(2)寫(xiě)出線(xiàn)段PA、圓弧AB和拋物線(xiàn)上OB一段的函數(shù)表達(dá)式.
(3)設(shè)P′、B′依次為從P、B到x軸的垂足,求由圓弧AB和直線(xiàn)段BB′、B′P′、P′P、PA所包含的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某城市有一條從正西方AO通過(guò)市中心O后向東北O(jiān)B,現(xiàn)要修一條地鐵L,在OA上設(shè)一站,在OB上設(shè)一站,地鐵在AB部分為直線(xiàn)段,現(xiàn)要求市中心O與AB的距離為10km,設(shè)地鐵在AB部分的總長(zhǎng)度為ykm.
(1)按下列要求建立關(guān)系式:
(i)設(shè)∠OAB=α,將y表示為α的函數(shù);
(ii)設(shè)OA=m,OB=n,用m,n表示y;
(2)把A,B兩站分別設(shè)在公路上離中心O多遠(yuǎn)處,才能使AB最短,并求出最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省常州中學(xué)高三最后沖刺綜合練習(xí)數(shù)學(xué)試卷6(文科)(解析版) 題型:解答題

如圖,某城市有一條從正西方AO通過(guò)市中心O后向東北O(jiān)B,現(xiàn)要修一條地鐵L,在OA上設(shè)一站,在OB上設(shè)一站,地鐵在AB部分為直線(xiàn)段,現(xiàn)要求市中心O與AB的距離為10km,設(shè)地鐵在AB部分的總長(zhǎng)度為ykm.
(1)按下列要求建立關(guān)系式:
(i)設(shè)∠OAB=α,將y表示為α的函數(shù);
(ii)設(shè)OA=m,OB=n,用m,n表示y;
(2)把A,B兩站分別設(shè)在公路上離中心O多遠(yuǎn)處,才能使AB最短,并求出最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:1978年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(附加題)(解析版) 題型:解答題

已知L為過(guò)點(diǎn)P且傾斜角為30°的直線(xiàn),圓C為圓心是坐標(biāo)原點(diǎn)且半徑等于1的圓,Q表示頂點(diǎn)在原點(diǎn)而焦點(diǎn)是的拋物線(xiàn),設(shè)A為L(zhǎng)和C在第三象限的交點(diǎn),B為C和Q在第四象限的交點(diǎn).
(1)寫(xiě)出直線(xiàn)L、圓C和拋物線(xiàn)Q的方程,并作草圖.
(2)寫(xiě)出線(xiàn)段PA、圓弧AB和拋物線(xiàn)上OB一段的函數(shù)表達(dá)式.
(3)設(shè)P′、B′依次為從P、B到x軸的垂足,求由圓弧AB和直線(xiàn)段BB′、B′P′、P′P、PA所包含的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案