設(shè)數(shù)列{an}滿足,an+1=an2+an(n∈N*),記,則S10的整數(shù)部分為
- A.
1
- B.
2
- C.
3
- D.
4
B
分析:由數(shù)列{a
n}滿足
,a
n+1=a
n2+a
n(n∈N
*),知
=
=
,所以
,故
+…+
=
,由此能夠求出S
10的整數(shù)部分.
解答:∵數(shù)列{a
n}滿足
,a
n+1=a
n2+a
n=a
n(a
n+1)(n∈N
*),
∴
=
=
=
,
∴
,
∴
+…+
=
,
∵
,
,
,
+
>1,
又a
n+1>a
n,
∴a
11>1,
∴0<
<1,
∵
,
∴S
10的整數(shù)部分是2.
故選B.
點評:本題考查數(shù)列的遞推式,綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答,注意挖掘題設(shè)中的隱含條件,合理地進行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)數(shù)列{a
n}滿足a
1=0,a
n+1=ca
n3+1-c,n∈N
*,其中c為實數(shù)
(1)證明:a
n∈[0,1]對任意n∈N
*成立的充分必要條件是c∈[0,1];
(2)設(shè)
0<c<,證明:a
n≥1-(3c)
n-1,n∈N
*;
(3)設(shè)
0<c<,證明:
++…>n+1-,n∈N*.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知
f(x)=(m>0),當x
1、x
2∈R且x
1+x
2=1時,總有
f(x1)+f(x2)=.
(1)求m的值;
(2)設(shè)數(shù)列a
n滿足
an=f()+f()+f()+…+f(),求a
n的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)數(shù)列{a
n}滿足a
1=a,a
n+1=ca
n+1-c,n∈N
*其中a,c為實數(shù),且c≠0
(Ⅰ)求數(shù)列{a
n}的通項公式
(Ⅱ)設(shè)a=
,c=
,b
n=n(1-a
n),n∈N
*,求數(shù)列{b
n}的前n項和S
n;
(Ⅲ)若0<a
n<1對任意n∈N
*成立,求實數(shù)c的范圍.(理科做,文科不做)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)數(shù)列{a
n}滿足:a
1=
,且
an=an-1+(n∈N
*,n≥2)
(1)求證:數(shù)列{
an-}為等比數(shù)列,并求數(shù)列{a
n}的通項a
n;
(2)求{a
n}的前n項和S
n.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)n∈N
*,不等式組
所表示的平面區(qū)域為D
n,把D
n內(nèi)的整點(橫、縱坐標均為整數(shù)的點)按其到原點的距離從近到遠排列成點列:(x
1,y
1),(x
2,y
2),…,(x
n,y
n)
(1)求(x
n,y
n);
(2)設(shè)數(shù)列{a
n}滿足
a1=x1,an=(++…+),(n≥2),求證:n≥2時,
-=;
(3)在(2)的條件下,比較
(1+)(1+)…(1+)與4的大。
查看答案和解析>>