【題目】某企業(yè)共有20條生產(chǎn)線,由于受生產(chǎn)能力和技術(shù)水平等因素的影響,會(huì)產(chǎn)生一定量的次品.根據(jù)經(jīng)驗(yàn)知道,每臺(tái)機(jī)器產(chǎn)生的次品數(shù)萬(wàn)件與每臺(tái)機(jī)器的日產(chǎn)量萬(wàn)件之間滿足關(guān)系:.已知每生產(chǎn)1萬(wàn)件合格的產(chǎn)品可以以盈利3萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元.

)試將該企業(yè)每天生產(chǎn)這種產(chǎn)品所獲得的利潤(rùn)表示為的函數(shù);

)當(dāng)每臺(tái)機(jī)器的日產(chǎn)量為多少時(shí),該企業(yè)的利潤(rùn)最大,最大為多少?

【答案】(;(,利潤(rùn)最大,最大為.

【解析】

試題分析:()利用利潤(rùn)盈利虧損,得到的關(guān)系,再將代入整理即可求出之間的函數(shù)關(guān)系;()對(duì)()中解析式求導(dǎo),利用單調(diào)性,找到取最大值時(shí)的值,求出最大利潤(rùn).

試題解析:()根據(jù)題意,該企業(yè)所得利潤(rùn)為:

.

)由()知:

.

,可得.

從而當(dāng)時(shí),,函數(shù)在上為增函數(shù);

當(dāng)時(shí),,函數(shù)在上為減函數(shù)

所以當(dāng)時(shí)函數(shù)取得極大值即為最大值,

當(dāng)時(shí),,

所以每臺(tái)機(jī)器的日產(chǎn)量為萬(wàn)件時(shí),該企業(yè)的利潤(rùn)最大,最大利潤(rùn)為(萬(wàn)元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,底面為菱形, 平面, 分別是的中點(diǎn).

(Ⅰ)證明: ;

(Ⅱ)若上的動(dòng)點(diǎn), 與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為、,左準(zhǔn)線和右準(zhǔn)線分別與軸相交于兩點(diǎn),恰好為線段的三等分點(diǎn)

(1)求橢圓的離心率;

(2)過(guò)點(diǎn)作直線與橢圓相交于、兩點(diǎn),且滿足,當(dāng)△的面積最大時(shí)為坐標(biāo)原點(diǎn)),求橢圓的標(biāo)準(zhǔn)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知函數(shù).

(1函數(shù)單調(diào)區(qū)間和極值;

(2證明:當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn)(提示:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知函數(shù).

(1)判斷單調(diào)性;

(2)已不等式對(duì)任意成立;函數(shù)兩個(gè)零點(diǎn)分別在區(qū)間內(nèi),如果真,為假,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三次函數(shù),下列命題正確的是 .

函數(shù)關(guān)于原點(diǎn)中心對(duì)稱;

,兩不同的點(diǎn)為切點(diǎn)作兩條互相平行的切線,分別與交于兩點(diǎn),則這四個(gè)點(diǎn)的橫坐標(biāo)滿足關(guān)系

為切點(diǎn),作切線與圖像交于點(diǎn),再以點(diǎn)為切點(diǎn)作直線與圖像交于點(diǎn),再以點(diǎn)作切點(diǎn)作直線與圖像交于點(diǎn),則點(diǎn)橫坐標(biāo)為;

,函數(shù)圖像上存在四點(diǎn),使得以它們?yōu)轫旤c(diǎn)的四邊形有且僅有一個(gè)正方形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知關(guān)于不等式解集為.

(1)個(gè)數(shù)中任取的一個(gè)數(shù),個(gè)數(shù)中任取的一個(gè)數(shù),求為空集的概率;

(2)若是從區(qū)間任取的一個(gè)數(shù),從區(qū)間任取的一個(gè)數(shù),求為空集的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,點(diǎn)

(1)求當(dāng)時(shí),點(diǎn)滿足的概率;

(2)求當(dāng)時(shí),點(diǎn)滿足的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程

(1)求該方程表示一條直線的條件;

(2)當(dāng)為何實(shí)數(shù)時(shí),方程表示的直線斜率不存在?求出這時(shí)的直線方程;

(3)已知方程表示的直線軸上的截距為-3,求實(shí)數(shù)的值;

(4)若方程表示的直線的傾斜角是45°,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案