已知函數(shù)f(x)=4x2+kx+8在區(qū)間[5,20]上具有單調性,則實數(shù)k的取值范圍是(  )
分析:先確定函數(shù)的對稱軸,結合二次函數(shù)的性質,由函數(shù)在[5,20]具有單調性,分類討論:函數(shù)單調遞增和單調遞減討論對稱性與區(qū)間端點的位置可求解.
解答:解:∵f(x)=4x2+kx+8的對稱軸:x=-
k
8

∵函數(shù)f(x)=4x2+kx+8在在x∈[5,20]具有單調性
∴-
k
8
≤5或-
k
8
≥20

解可得k≥-40或k≤-160
故選A
點評:本題主要考查二次函數(shù)的單調性的應用,研究性要明確開口方向及對稱軸,然后研究對稱軸與區(qū)間的相對位置,解題中要審題清楚:函數(shù)具有單調性要分單調遞增及單調遞減
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-
4+
1
x2
,數(shù)列{an},點Pn(an,-
1
an+1
)在曲線y=f(x)上(n∈N+),且a1=1,an>0.
( I)求數(shù)列{an}的通項公式;
( II)數(shù)列{bn}的前n項和為Tn且滿足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-
4-x2
在區(qū)間M上的反函數(shù)是其本身,則M可以是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4+ax-1(a>0且a≠1)的圖象恒過定點P,則P點的坐標是
(1,5)
(1,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4-x
的定義域為A,B={x|2x+3≥1}.
(1)求A∩B;
(2)設全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),數(shù)列{an}滿足an=f(n)(n∈N*),且{an}是單調遞增數(shù)列,則實數(shù)a的取值范圍( 。

查看答案和解析>>

同步練習冊答案