(本小題滿分13分)
已知橢圓的短軸長(zhǎng)為,且與拋物線有共同的焦點(diǎn),橢圓的左頂點(diǎn)為A,右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求線段的長(zhǎng)度的最小值;
(Ⅲ)在線段的長(zhǎng)度取得最小值時(shí),橢圓上是否存在一點(diǎn),使得的面積為,若存在求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
(1)(2)8(3)
(I)由已知得,拋物線的焦點(diǎn)為,則,又
,可得
故橢圓的方程為.…………………………………………4分
(Ⅱ)直線的斜率顯然存在,且,故可設(shè)直線的方程為,從而
.………………………………6分
設(shè),則 .所以,從而
,
則直線的斜率為
    得
所以

,
當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.
所以當(dāng)時(shí),線段的長(zhǎng)度取最小值.…………………………………………8分
(Ⅲ)由(Ⅱ)可知,當(dāng)的長(zhǎng)度取最小值時(shí),
則直線的方程為,此時(shí),
若橢圓上存在點(diǎn),使得的面積等于,則點(diǎn)到直線的距離等于,
所以在平行于且與距離等于的直線上.
設(shè)直線
則由 得.………………………………………10分
.即
由平行線間的距離公式,得
解得(舍去).
可求得.…………………………………………13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分16分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.
已知橢圓),其左、右焦點(diǎn)分別為、,且、成等比數(shù)列.
(1)求的值.
(2)若橢圓的上頂點(diǎn)、右頂點(diǎn)分別為、,求證:
(3)若為橢圓上的任意一點(diǎn),是否存在過(guò)點(diǎn)、的直線,使軸的交點(diǎn)滿足?若存在,求直線的斜率;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=x2-1上一定點(diǎn)B(-1,0)和兩個(gè)動(dòng)點(diǎn)P、Q,當(dāng)P在拋物線上運(yùn)動(dòng)時(shí),BPPQ,則Q點(diǎn)的橫坐標(biāo)的取值范圍是_________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定長(zhǎng)為的線段的端點(diǎn)在拋物線上移動(dòng),求中點(diǎn)到軸距離的最小值,并求出此時(shí)中點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓交于A、B兩點(diǎn),過(guò)原點(diǎn)與線段AB中點(diǎn)連線的斜率為,則的值等于(     )  
A.          B.        C.       D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)△的重心任作一直線分別交,為中線
,,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線上到定點(diǎn)的距離是的點(diǎn)的個(gè)數(shù)是(   )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線恒經(jīng)過(guò)、兩定點(diǎn),且以圓的任一條切線除外)為準(zhǔn)線,則該拋物線的焦點(diǎn)F的軌跡方程為:              ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)曲線)在點(diǎn)處的切線與軸交點(diǎn)的橫坐標(biāo)為,則    .

查看答案和解析>>

同步練習(xí)冊(cè)答案