【題目】用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用歸納假設(shè)證明當(dāng)n=k+1時(shí)的情況,只需展開(  )

A. (k+3)3 B. (k+2)3

C. (k+1)3 D. (k+1)3+(k+2)3

【答案】A

【解析】假設(shè)當(dāng)nk時(shí),原式能被9整除,

k3(k1)3(k2)3能被9整除.

當(dāng)nk1時(shí),(k1)3(k2)3(k3)3為了能用上面的歸納假設(shè),只需將(k3)3展開,讓其出現(xiàn)k3即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1單位:件).已知每個(gè)工人每天可生產(chǎn)部件6件,或部件3件,或部件2件該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)部件的人數(shù)與生產(chǎn)部件的人數(shù)成正比,比例系數(shù)為為正整數(shù)).

1設(shè)生產(chǎn)部件的人數(shù)為,分別寫出完成三件部件生產(chǎn)需要的時(shí)間;

2假設(shè)這三種部件的生產(chǎn)同時(shí)開工,若,求完成訂單任務(wù)的最短時(shí)間,并給出此時(shí)具體的人數(shù)分組方案

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在組織結(jié)構(gòu)圖中,一般采用_____結(jié)構(gòu)繪制,它直觀,容易理解,被應(yīng)用于很多領(lǐng)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l與l1關(guān)于點(diǎn)(1,-1)成中心對稱,若l的方程是2x+3y-6=0,則l1的方程是(  )

A. 2x+3y+8=0 B. 2x+3y+7=0

C. 3x-2y-12=0 D. 3x-2y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于下列程序:

a=input(“a=”);

if a>5

b=4;

else

 if a<3

 b=5;

 else

 b=9;

 print(%io(2),a,b);

 end

end

如果在運(yùn)行時(shí),輸入2,那么輸出的結(jié)果是(  )

A. 2,5 B. 2,4

C. 2,3 D. 2,9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有300家商店,其中大型商店有30,中型商店有75,小型商店有195,為了掌握各商店的營業(yè)情況,要從中抽取一個(gè)容量為20的樣本,若采用分層抽樣的方法,抽取的中型商店為(  )

A. 2 B. 3

C. 5 D. 13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

1)求的解析式及單調(diào)遞減區(qū)間;

2)是否存在常數(shù),使得對于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2≥4},B={m}.若ABA,則m的取值范圍是(  )

A. (-∞,-2) B. [2,+∞)

C. [-2,2] D. (-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1過兩點(diǎn)(-1,-2),(-1,4),直線l2過兩點(diǎn)(2,1)、(6,y),且l1l2,則y____

查看答案和解析>>

同步練習(xí)冊答案