A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根據(jù)f(x)為奇函數(shù),可設x>0,從而有-x<0,從而可求出f(x)=e-x(x-1),從而可看出-1,1,0都是f(x)的零點,這便得出①②錯誤,而由f(x)解析式便可解出f(x)>0的解集,從而判斷出③的正誤,可分別對x<0和x>0時的f(x)求導數(shù),根據(jù)導數(shù)符號可判斷f(x)的單調性.
解答 解:對于①,f(x)為R上的奇函數(shù),設x>0,-x<0,則:f(-x)=e-x(-x+1)=-f(x);
∴f(x)=e-x(x-1),∴①錯誤;
對于②,∵f(-1)=0,f(1)=0;又f(0)=0;
∴f(x)有3個零點,∴②錯誤;
對于③,當x<0時,f(x)=ex(x+1);∴-1<x<0時,f(x)>0;
當x>0時,f(x)=e-x(x-1);∴x>1時,f(x)>0;
∴f(x)>0的解集為(-1,0)∪(1,+∞),∴③正確;
對于④,(1)x<0時,f′(x)=ex(x+2);
∴x<-2時,f′(x)<0,-2<x<0時,f′(x)>0;
∴f(x)在(-∞,-2上單調遞減,在(-2,0)上單調遞增;
∴④錯.
故選:A
點評 考查奇函數(shù)的定義,對于奇函數(shù),已知一區(qū)間上的解析式,求其對稱區(qū)間上解析式的方法,函數(shù)零點的定義及求法,指數(shù)函數(shù)的值域,以及根據(jù)導數(shù)符號判斷函數(shù)單調性,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{6}{7}$ | B. | 1 | C. | $\sqrt{3}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 正偶數(shù) | B. | 正整數(shù) | C. | 正奇數(shù) | D. | 整數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{18}{5}$ | B. | $\frac{14}{5}$ | C. | $\frac{12}{5}$ | D. | $\frac{9}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com