設(shè)函數(shù)其中,曲線在點(diǎn)處的切線方程為.
(I)確定的值;
(II)設(shè)曲線在點(diǎn)處的切線都過點(diǎn)(0,2).證明:當(dāng)時(shí),;
(III)若過點(diǎn)(0,2)可作曲線的三條不同切線,求的取值范圍.
(I),;(II)詳見試題解析;(III)的取值范圍是.
【解析】
試題分析:(I)根據(jù)導(dǎo)數(shù)的幾何意義,首先對函數(shù)求導(dǎo),可得,由已知:曲線在點(diǎn)處的切線方程為,從而可得的值及,又,故得;(II)先利用導(dǎo)數(shù)的幾何意義,求出在點(diǎn)處的切線方程為,而點(diǎn)在切線上,所以,化簡即得滿足的方程為,下面利用反證法明當(dāng)時(shí),;(III)由(II)知,過點(diǎn)可作的三條切線,等價(jià)于方程有三個(gè)相異的實(shí)根,即等價(jià)于方程有三個(gè)相異的實(shí)根.構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)的極大值、極小值,只要的極大值與極小值異號即可,解這個(gè)不等式組即可求得的取值范圍.
試題解析:(I)由又由曲線處的切線方程為,得故
(II)處的切線方程為,而點(diǎn)在切線上,所以,化簡得,即滿足的方程為.
下面用反證法證明:假設(shè)處的切線都過點(diǎn),則下列等式成立.
由(3)得
又,故由(4)得,此時(shí)與矛盾,.
(III)由(II)知,過點(diǎn)可作的三條切線,等價(jià)于方程有三個(gè)相異的實(shí)根,即等價(jià)于方程有三個(gè)相異的實(shí)根.
設(shè),則,由于,故有
0 |
|||||
+ |
0 |
- |
0 |
+ |
|
↗ |
極大值1 |
↘ |
極小值 |
↗ |
由 的單調(diào)性知:要使有三個(gè)相異的實(shí)根,當(dāng)且僅當(dāng)<0,.
的取值范圍是.
考點(diǎn):1.利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性、求函數(shù)的極值;2.導(dǎo)數(shù)的幾何意義;3.函數(shù)的零點(diǎn)與方程的根.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省中山市實(shí)驗(yàn)高中高三11月階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè),其中,曲線在點(diǎn)處的切線垂直于軸.
(1)求的值;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省高三上學(xué)期第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)其中,曲線在點(diǎn)處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè),其中,曲線在點(diǎn)處的切線與軸相交于點(diǎn)。
(1)確定的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com