精英家教網 > 高中數學 > 題目詳情
16、設f(x)是R上的奇函數,且f(x+2)=-f(x),當0≤x≤1時,f(x)=x,則f(7.5)等于
-0.5
分析:利用奇函數定義與條件f(x+2)=-f(x),把f(7.5)的自變量轉化到[0,1]的范圍內即可.
解答:解:因為f(x+2)=-f(x),
所以f(7.5)=-f(5.5),f(5.5)=-f(3.5),f(3.5)=-f(1.5),f(1.5)=-f(-0.5),
所以f(7.5)=f(-0.5).
又f(x)是R上的奇函數,
所以f(-0.5)=-f(0.5),
因為0≤x≤1時,f(x)=x,
故f(7.5)=-f(0.5)=-0.5
點評:本題考查奇函數定義及f(x+T)=-f(x)的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f(x)是R上的奇函數,且f(-1)=0,當x>0時,(x2+1)f′(x)-2xf(x)<0,則不等式f(x)>0的解集為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是R上的奇函數,且對?x∈R都有f(x+2)=-f(x),當-1≤x≤1時,f(x)=x3,
(1)求證:直線x=1是函數f(x)的圖象的一條對稱軸;
(2)當x=[1,5]時,求函數f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是R上的奇函數,且y=f(x)的圖象關于直線x=
12
對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=
0
0

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是R上的奇函數,且當x∈(0,+∞)時,f(x)=x(1+x),則 f(x)在 (-∞,0)上的解析式
f(x)=x(1-x)
f(x)=x(1-x)

查看答案和解析>>

同步練習冊答案