14.在圖中,二次函數(shù)y=bx2+ax與指數(shù)函數(shù)y=($\frac{a}$)x的圖象只可為( 。
A.B.C.D.

分析 根據(jù)二次函數(shù)的對稱軸首先排除B、D選項,結(jié)合二次函數(shù)和指數(shù)函數(shù)的性質(zhì)逐個檢驗即可得出答案

解答 解:根據(jù)指數(shù)函數(shù)y=($\frac{a}$)x可知a,b同號且不相等,則二次函數(shù)y=ax2+bx的對稱軸-$\frac{2a}$<0可排除B,D
由圖象可知y=($\frac{a}$)x均為減函數(shù),
又因為二次函數(shù)y=ax2+bx過坐標(biāo)原點,∴C正確,
故選:C.

點評 本題考查了同一坐標(biāo)系中指數(shù)函數(shù)圖象與二次函數(shù)圖象的關(guān)系,根據(jù)指數(shù)函數(shù)圖象確定出a、b的正負(fù)情況是求解的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.不等式-4+x-x2<0的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列命題:
①分別在兩個平面內(nèi)的兩條直線是異面直線;
②和兩條異面直線都垂直的直線有且僅有一條;
③和兩條異面直線都相交的兩條直線異面或相交;
④若a與b是異面直線,b與c是異面直線,則a與c也異面.
其中真命題的個數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lg$\sqrt{x+1}$,g(x)=lg(2x+t)(t為參數(shù)).
(1)當(dāng)函數(shù)g(x)在x∈[0,1]上恒有意義時,求實數(shù)t的取值范圍;
(2)如果當(dāng)x∈[0,1]時,f(x)≤g(x)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={0,1},集合N={x|x2+x=0},則集合M∩N=( 。
A.0B.C.{0}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=loga$\frac{x-5}{x+5}$,(a>0且a≠1).
(1)求函數(shù)的定義域;
(2)判斷f(x)的奇偶性,并加以證明;
(3)當(dāng)a>0,f(x)<0,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)方程3-x=|lgx|的兩個根分別為x1,x2,則( 。
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知ABCD-A1B1C1D1是一個棱長為1的正方體,O1是底面A1B1C1D1的中心,M是棱BB1上的點,且S△DBM:S${\;}_{△{O}_{1}{B}_{1}M}$=2:3,則四面體O1ADM的體積為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在三棱錐A-BCD中,AB⊥平面BCD,BC⊥CD,點E在棱AC上,且BE⊥AC.
(1)試證明:BE⊥面ACD;
(2)若AB=BC=CD=2,過直線BE任作一個平面與直線AD相交于點P,得到三棱錐A-BCD的一個截面△BEP,求△BEP面積的最小值;
(3)若AB=BC=CD=2,求二面角B-AD-C的正弦值.

查看答案和解析>>

同步練習(xí)冊答案