已知三棱柱的側棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于( )
A. B. C. D.
B
【解析】
試題分析:根據(jù)題意可知,ABC的中心為O,連CO并延長交AB于D,過B1作B1E⊥AB交AB的延長線于E,再過B1作B1F⊥平面ABC交平面ABC于F。
設AB=a。∵AB=AC=BC=a,O是△ABC的中心,∴CD⊥AD、AD=BD=,∴CD=
顯然有: 。
∵O是在平面ABC上的射影,∴O⊥平面ABC,∴AD⊥,又AD⊥CD、CD∩=O,∴AD⊥平面,∴AD⊥。
由=a、AD=、⊥,得:。∵⊥平面ABC,∴⊥
由、、⊥,得:
=
∵⊥、⊥,∴∥
∵是三棱柱,∴。
由∥,得:是平行四邊形,∴=、=a顯然,有:AE=AD+DE=+a=。
∵⊥平面ABC,⊥平面ABC,∴∥,∴共面。
∵是三棱柱,∴∥平面ABC,而平面ABC∩平面=OF,∴∥OF。由∥、∥OF,得:是平行四邊形,∴==
∵⊥平面ABC,∴⊥AF。,得:sin∠==
考點:本試題考查了線面角的求解知識。
點評:對于該試題中的線面角的求解,關鍵是建立線面垂直的背景,同時根據(jù)已知的邊長和側棱長的關系式得到角度,進而求解運算,屬于難度試題。
科目:高中數(shù)學 來源: 題型:
(2009全國卷Ⅰ文)已知三棱柱的側棱與底面邊長都相等,在底面上的射影為的中點,則異面直線與所成的角的余弦值為
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西西安長安區(qū)一中高三上學期第三次檢測理科數(shù)學試卷(解析版) 題型:選擇題
已知三棱柱的側棱與底面垂直,體積為,底面是邊長為的正三角形.若為底面的中心,則與平面所成角的大小為( )
A.. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(山東卷解析版) 題型:選擇題
已知三棱柱的側棱與底面垂直,體積為,底面是邊長為的正三角形,若為底面的中心,則與平面所成角的大小為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆浙江省高二上學期期末考試理科數(shù)學 題型:選擇題
已知三棱柱的側棱與底面邊長都相等,在底面上的射影為的中點,則異面直線與所成的角的余弦值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com