某集團為了獲得更大的收益,每年要投入一定的資金用于廣告宣傳,經(jīng)調查,每投入廣告費
t(百萬元)可增加的銷售額約為
(百萬元)。
(I)若該公司將當年的廣告宣傳費控制在3百萬元之內,則應投入多少廣告費才能使公司由此獲得的收益最大。
(II)現(xiàn)該公司準備投入3百萬元,分別用于廣告宣傳和技術改造,經(jīng)預測,每投入技術改造費x(百萬元)可增加的銷售額約為
(百萬元),請設計資金分配方案,使該公司由
此獲得的收益最大。(注:收益=銷售額—投入)
解:(I)設通過廣告費獲得的收益為y百萬元,則
……………1分
……………3分
則當
……………4分,
因此投入廣告費2百萬元時其收益最大………5分.
(II)設收益為y百萬元,則
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
某單位建造一間地面面積為12
的背面靠墻的矩形小房,由于地理位置的限制,房子側面的長度
不得
超過
米,房屋正面的造價為400元
,房屋側面的造價為150元
,屋頂和底面的造價費用合計為5800元,如果墻高為3米.且不計房屋背面的費用.
(1)把房屋總造價
表示成
的函數(shù),并寫出該函數(shù)的定義域;
(2)當側面的長度為多少時,總造價最低?最低總造價是多少?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若直線
與曲線
有2個交點,則實數(shù)
的最小值是 ( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
,則
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若方程
有4個不相等的實數(shù)根,則實數(shù)
的取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,是某受污染的湖泊在自然凈化過程中,某種有害物質的剩留量y與凈化時間t(月)的近似函數(shù)關系:
(t≥0,a>0且a≠1).有以下敘述 ①第4個月時,剩留量就會低于
;②每月減少的有害物質量都相等;③若剩留量為
所經(jīng)過的時間分別是
,則
. 其中所有正確的敘述是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
,則方程
不相等的實根的個數(shù)為
;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)已知
為
上的偶函數(shù),且當
≥0時,
,則
(1)
在R上的解析式為;
(2)寫出
的單調區(qū)間.
查看答案和解析>>