分析 (1)通過a的討論,求出函數(shù)的極小值,判斷零點個數(shù).
(2)通過函數(shù)的導數(shù),利用函數(shù)的最值,列出不等式求解即可.
解答 解:(1)當a<0時,由ex=a(x+1),考查y=ex與y=a(x+1)的圖象知只有一個零點;
當a=0時,無零點;
當a>0時,f′(x)=ex-a=0,x=lna,f(x)在x=lna處取得極小值f(lna)=-alna,
若a>1,f(lna)=-alna<0,有兩個零點,
若a=1,f(lna)=0,有一個零點,
若0<a<1,f(lna)>0,無零點.
綜上,當a<0或a=1時,有一個零點;當0≤a<1時,無零點;當a>1時,有兩個零點.(6分)
(2)由已知當x∈[-1,2]時,f(x)min≥g(x)min.
當a≤0時,f′(x)=ex-a>0,f(x)min=f(-1)=$\frac{1}{e}$,
g′(x)=(x-1)(x-3),g(x)在[-1,1]上遞增,
在[1,2]上遞減,g(-1)=0,g(2)=6,g(x)min=0,f(x)min≥g(x)min.
當a>0時,f′(x)=ex-a=0,x=lna,f(x)在(-∞,lna)上遞減,在(lna,+∞)上遞增.
若lna≤-1即0<a≤$\frac{1}{e}$,f(x)min=f(-1)=$\frac{1}{e}$,滿足f(x)min≥g(x)min,
若-1<lna<2即$\frac{1}{e}$<a<e2,f(x)min=f(lna)=-alna,由-alna≥0解得$\frac{1}{e}$<a≤1,
若lna≥2即a≥e2,f(x)在[-1,2]上遞減,
f(x)min=f(2)=e2-3a<0,不滿足條件.
綜上可知a的取值范圍是(-∞,1].(12分)
點評 本題考查函數(shù)的導數(shù)的綜合應用,函數(shù)的零點個數(shù)的判斷,考查分類討論思想的應用,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b>c>a | B. | a>b>c | C. | a>c>b | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $?p:?x>2,{log_2}(x+\frac{4}{x})≤2$且¬p為真命題 | |
B. | $?p:?x≤2,{log_2}(x+\frac{4}{x})>2$且¬p為真命題 | |
C. | $?p:?x>2,{log_2}(x+\frac{4}{x})≤2$且¬p為假命題 | |
D. | $?p:?x≤2,{log_2}(x+\frac{4}{x})>2$且¬p為假命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2≤x<3} | B. | {x|x≤-2} | C. | {x|x<3} | D. | {x|x<-2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{n}{2n+1}$ | B. | $\frac{n}{2n-1}$ | C. | $\frac{n}{2n-3}$ | D. | $\frac{n}{2n+3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com