【題目】已知橢圓的離心率為,且點在橢圓.

(1)求橢圓的方程;

(2)若橢圓的焦點在軸上,點為坐標原點,射線、分別與橢圓交于點、點,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

【答案】(1);(2)直線與圓相離.證明見解析

【解析】

1)對橢圓的焦點位置進行分類討論,并分別設(shè)出橢圓的標準方程,再根據(jù)離心率和橢圓過點,分別求出對應(yīng)的標準方程;

2)對點分成在坐標軸上和不在坐標軸上兩種情況分別求解,再利用點到直線的距離公式,判斷直線與圓的位置關(guān)系即可.

(1)①當橢圓的焦點在軸上時,設(shè)橢圓的方程為:,

,∴,

將點代入可得,

∴橢圓的方程為:.

②當橢圓的焦點在軸上時,設(shè)橢圓的方程為:,

可得,∴,

將點代入可得,

∴橢圓的方程為:.

(2)直線與圓相離,

由(1)知,橢圓的方程為:,

,在坐標軸上時,容易求得直線與圓相離;

,不在坐標軸上時,設(shè)直線,則直線

聯(lián)立,可得,,∴

聯(lián)立,可得,∴,

根據(jù)面積關(guān)系可得圓心到直線的距離的平方,

∴直線與圓相離.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是數(shù)列的前項和,,,數(shù)列中,,且.

1)求數(shù)列的通項公式;

2)設(shè),求的前項和;

3)證明:對一切

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)若曲線與曲線在它們的公共點處且有公共切線,求的值;

2)若存在實數(shù)使不等式的解集為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,底面是邊長為2的等邊三角形,點D,E分別是的中點.

(1)證明:平面

(2)若,證明:平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C=2px經(jīng)過點(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點A,B,且直線PAy軸于M,直線PBy軸于N

求直線l的斜率的取值范圍;

設(shè)O為原點,,,求證為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)在銳角中,若,且能蓋住的最小圓的面積為,求周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的圖象在點處切線的方程;

(2)討論函數(shù)的極值;

(3)若對任意的成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且以,為焦點,橢圓的離心率為.

1)求實數(shù)的值;

2)過左焦點的直線與橢圓相交于、兩點,為坐標原點,問橢圓上是否存在點,使線段和線段相互平分?若存在,求出點的坐標,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=exax1,aR

1)當a2時,求函數(shù)fx)的單調(diào)性;

2)設(shè)a≤0,求證:x≥0時,fxx2

查看答案和解析>>

同步練習冊答案