過(guò)點(diǎn)P(1,2)的直線(xiàn)l與圓C:(x+3)2+(y-4)2=36交于A、B兩點(diǎn),當(dāng)|AB|最小時(shí),直線(xiàn)l的方程是
 
考點(diǎn):直線(xiàn)與圓相交的性質(zhì)
專(zhuān)題:直線(xiàn)與圓
分析:要使|AB|最小時(shí),則圓心到直線(xiàn)的距離最大,即CP⊥AB,求出直線(xiàn)的斜率即可.
解答: 解:圓心C坐標(biāo)為(-3,4),半徑R=6,
要使|AB|最小時(shí),則圓心到直線(xiàn)的距離最大,即CP⊥AB,
此時(shí)CP的斜率k=
4-2
-3-1
=-
1
2
,
則AB的斜率k=2,
則l的方程為y-2=2(x-1),
即y=2x,
故答案為:y=2x.
點(diǎn)評(píng):本題主要考查直線(xiàn)和圓的位置關(guān)系的應(yīng)用,根據(jù)弦長(zhǎng)最小,確定直線(xiàn)的位置關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若α=
π
4
,則tanα=1”的否命題是( 。
A、若α≠
π
4
,則tanα≠1
B、若α=
π
4
,則tanα≠1
C、若tanα≠1,則α≠
π
4
D、若tanα≠1,則α=
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等邊三角形ABC的邊長(zhǎng)為a,AD是BC邊上的高,沿AD將△ABC折成直二面角,則點(diǎn)A到BC的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,其導(dǎo)函數(shù)是f′(x),則
f′(3)
f′(-1)
=( 。
A、-2B、2C、5D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示(網(wǎng)格中的小正方形邊長(zhǎng)為1),則該幾何體的表面積為( 。
A、6+2
3
B、4+4
2
C、2+4
2
+2
3
D、4+2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)y=2x+1關(guān)于直線(xiàn)y=2x+3對(duì)稱(chēng)的直線(xiàn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+
a2-3
2
x2-ax+2,a∈R.
(Ⅰ)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)x-4y+8=0垂直,求a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos(2x+φ)(0≤φ<π)是奇函數(shù),則f(x)在[0,
4
]上的最大值與最小值的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校在2014年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如下表所示.
組號(hào)分組頻數(shù)頻率
第1組[160,165)50.050
第2組[165,170)n0.350
第3組[170,175)30p
第4組[175,180)200.200
第5組[180,185]100.100
合計(jì)1001.000
(Ⅰ)求頻率分布表中n,p的值,并補(bǔ)充完整相應(yīng)的頻率分布直方圖;
(Ⅱ)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(Ⅲ)在(Ⅱ)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案